Skip to main content

Investigation of Triple-Helix Collagen Hydroxylation by Solid-State NMR Spectroscopy

  • Protocol
  • First Online:
Collagen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1944))

Abstract

Solid-state nuclear magnetic resonance spectroscopy (ssNMR) is an emerging technique in structural methods of studying collagen proteins, capable of identifying features on an atomic length scale in tissues and protein samples without extensive extraction or purification. Hydroxylation is a key posttranslational modification of collagen that gives rise to distinctive signals in the ssNMR spectrum of collagen proteins. Here we outline the type of information that ssNMR can provide and describe the procedures involved in a ssNMR structural study, with particular focus on using dynamic nuclear polarization to enhance sensitivity for detecting hydroxylysine residues by ssNMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yamauchi M, Sricholpech M (2012) Lysine post-translational modifications of collagen. Essays Biochem 52:113–133. https://doi.org/10.1042/bse0520113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levitt MH (2013) Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons, New Jersey

    Google Scholar 

  4. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ, Rance M (2010) Protein NMR spectroscopy: principles and practice. Elsevier, Amsterdam

    Google Scholar 

  5. Keeler J (2011) Understanding NMR spectroscopy. John Wiley & Sons, New Jersey

    Google Scholar 

  6. Harris RK, Becker ED, De Menezes SMC, Granger P, Hoffman RE, Zilm KW (2008) International Union of Pure and Applied Chemistry physical and biophysical chemistry division (2008) further conventions for NMR shielding and chemical shifts IUPAC recommendations. Magn Reson Chem 46:582–598. https://doi.org/10.1002/mrc.2225

    Article  CAS  PubMed  Google Scholar 

  7. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  CAS  PubMed  Google Scholar 

  8. Allevi P, Paroni R, Ragusa A, Anastasia M (2004) Hydroxylysine containing glycoconjugates: an efficient synthesis of natural galactosylhydroxylysine (gal-Hyl) and glucosylgalactosylhydroxylysine (Glu-gal-Hyl) and of their (5S)-epimers. Tetrahedron Asymmetry 15:3139–3148. https://doi.org/10.1016/j.tetasy.2004.08.006

    Article  CAS  Google Scholar 

  9. LeMaster DM (1994) Isotope labeling in solution protein assignment and structural analysis. Prog Nucl Magn Reson Spectrosc 26:371–419. https://doi.org/10.1016/0079-6565(94)80010-3

    Article  CAS  Google Scholar 

  10. An B, Kaplan DL, Brodsky B (2014) Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Front Chem 2:40. https://doi.org/10.3389/fchem.2014.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chow WY, Rajan R, Muller KH, Reid DG, Skepper JN, Wong WC, Brooks RA, Green M, Bihan D, Farndale RW, Slatter DA, Shanahan CM, Duer MJ (2014) NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization. Science 344:742–746. https://doi.org/10.1126/science.1248167

    Article  CAS  PubMed  Google Scholar 

  12. Wong VWC, Reid DG, Chow WY, Rajan R, Green M, Brooks RA, Duer MJ (2015) Preparation of highly and generally enriched mammalian tissues for solid state NMR. J Biomol NMR 63:119–123. https://doi.org/10.1007/s10858-015-9977-9

    Article  CAS  PubMed  Google Scholar 

  13. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  14. Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B (2017) Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog Nucl Magn Reson Spectrosc 102-103:120–195. https://doi.org/10.1016/j.pnmrs.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  15. Itin B, Sergeyev IV (2018) Strategies for efficient sample preparation for dynamic nuclear polarization solid-state NMR of biological macromolecules. In: Ghose R (eds) Protein NMR. Methods in Molecular Biology, vol 1688. https://doi.org/10.1007/978-1-4939-7386-6_7

    Google Scholar 

  16. Lesage A, Lelli M, Gajan D, Caporini M A, Vitzthum V, Miéville P, Alauzun J, Roussey A, Thieuleux C, Mehdi A, Bodenhausen G, Copéret C, Emsley L (2010) Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 132:15459–61. https://doi.org/10.1021/jacs.5b08423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geiger M-A, Jagtap AP, Kaushik M, Sun H, Stöppler D, Sigurdsson ST, Corzilius B, Oschkinat H (2018) Efficiency of water-soluble Nitroxide Biradicals for dynamic nuclear polarization in rotating solids at 9.4 T: bcTol-M and cyolyl-TOTAPOL as new polarizing agents. Chemistry 24(51):13485–13494. https://doi.org/10.1002/chem.201801251

    Article  CAS  PubMed  Google Scholar 

  18. Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed Engl 125:11058–11061. https://doi.org/10.1002/ange.201304657

    Article  Google Scholar 

  19. Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053. https://doi.org/10.1103/physrev.128.2042

    Article  CAS  Google Scholar 

  20. Metz G, Wu XL, Smith SO (1994) Ramped-amplitude cross polarization in magic-angle-spinning NMR. J Magn Reson A 110:219–227. https://doi.org/10.1006/jmra.1994.1208

    Article  CAS  Google Scholar 

  21. Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475. https://doi.org/10.1016/0022-2364(82)90213-x

    Article  CAS  Google Scholar 

  22. Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637. https://doi.org/10.1016/s0009-2614(01)00791-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Jonathan Clark from the Babraham Institute for providing the lysine 13C-labelled mouse skin sample, Mr. Rakesh Rajan and Professor Melinda Duer from the University of Cambridge for providing the proline and glycine 13C, 15N-labelled fetal sheep osteoblast ECM sample, Mr. Robert Hayward and Professor Cathy Shanahan at King’s College London for providing the lysine 13C, 15N-labelled adult bovine vascular smooth muscle cell ECM sample, and Dr. Kelsey Collier at FMP Berlin for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Ying Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chow, W.Y. (2019). Investigation of Triple-Helix Collagen Hydroxylation by Solid-State NMR Spectroscopy. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics