Skip to main content

A Biomimetic Model for Mineralization of Type-I Collagen Fibrils

  • Protocol
  • First Online:
Collagen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1944))

Abstract

The bone and dentin mainly consist of type-I collagen fibrils mineralized by hydroxyapatite (HAP) nanocrystals. In vitro biomimetic models based on self-assembled collagen fibrils have been widely used in studying the mineralization mechanism of type-I collagen. In this chapter, the protocol we used to build a biomimetic model for the mechanistic study of type-I collagen mineralization is described. Type-I collagen extracted from rat tail tendon or horse tendon is self-assembled into fibrils and mineralized by HAP in vitro. The mineralization process is monitored by cryoTEM in combination with two-dimensional (2D) and three-dimensional (3D) stochastic optical reconstruction microscopy (STORM), which enables in situ and high-resolution visualization of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

    Article  CAS  Google Scholar 

  2. Beniash E, Traub W, Veis A, Weiner S (2000) A transmission electron microscope study using vitrified ice sections of predentin: structural changes in the dentin collagenous matrix prior to mineralization. J Struct Biol 132:212–225

    Article  CAS  Google Scholar 

  3. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 3:711–735

    Article  Google Scholar 

  4. Hodge AJ (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, New York, pp 289–300

    Google Scholar 

  5. Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A 103:9001–9005

    Article  CAS  Google Scholar 

  6. Quan BD, Sone ED (2013) Cryo-TEM analysis of collagen fibrillar structure. Methods Enzymol 532:189–205

    Article  CAS  Google Scholar 

  7. Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206:262–266

    Article  CAS  Google Scholar 

  8. Olszta MJ et al (2007) Bone structure and formation: A new perspective. Mater Sci Eng R Rep 58:77–116

    Article  Google Scholar 

  9. Gao HJ, Ji BH, Jager IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc Natl Acad Sci U S A 100:5597–5600

    Article  CAS  Google Scholar 

  10. Nair AK, Gautieri A, Chang S-W, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724

    Article  Google Scholar 

  11. Chen J, Burger C, Krishnan CV, Chu B, Hsiao BS, Glimcher MJ (2005) In vitro mineralization of collagen in demineralized fish bone. Macromol Chem Phys 206:43–51

    Article  CAS  Google Scholar 

  12. Wang J et al (2013) Remineralization of dentin collagen by meta-stabilized amorphous calcium phosphate. CrystEngComm 15:6151–6158

    Article  CAS  Google Scholar 

  13. Olszta M, Douglas E, Gower L (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72:583–591

    Article  CAS  Google Scholar 

  14. Shao C et al (2018) Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control. Adv Mater 30:1704876

    Google Scholar 

  15. Nudelman F et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  CAS  Google Scholar 

  16. Niu LN et al (2017) Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater 16:370–378

    Article  CAS  Google Scholar 

  17. Wang Y et al (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724

    Article  CAS  Google Scholar 

  18. Jiang F, Hörber H, Howard J, Müller DJ (2004) Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol 148:268–278

    Article  CAS  Google Scholar 

  19. Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem 253:6578–6585

    CAS  PubMed  Google Scholar 

  20. George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 108:4670–4693

    Article  CAS  Google Scholar 

  21. Price PA, Toroian D, Lim JE (2009) Mineralization by inhibitor exclusion the calcification of collagen with fetuin. J Biol Chem 284:17092–17101

    Article  CAS  Google Scholar 

  22. Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED (2013) In vitro models of collagen biomineralization. J Struct Biol 183:258–269

    Article  CAS  Google Scholar 

  23. Smeets PJM et al (2017) A classical view on nonclassical nucleation. Proc Natl Acad Sci U S A 114:E7882–E7890

    Article  CAS  Google Scholar 

  24. Bates M, Jones SA, Zhuang X (2013) Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging. Cold Spring Harb Protoc 2013(6):498–520 pdb.top075143

    PubMed  Google Scholar 

  25. Nudelman F, Bomans PH, George A, Sommerdijk NA (2012) The role of the amorphous phase on the biomimetic mineralization of collagen. Faraday Discuss 159:357–370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruikang Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yao, S., Xu, Y., Shao, C., Nudelman, F., Sommerdijk, N.A.J.M., Tang, R. (2019). A Biomimetic Model for Mineralization of Type-I Collagen Fibrils. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics