Skip to main content

Lipopeptide Delivery of siRNA to the Central Nervous System

  • Protocol
  • First Online:
Nanotechnology for Nucleic Acid Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1943))

Abstract

RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously, these liposome–siRNA–peptide complexes (LSPCs) or peptide addressed liposome encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. McCaffrey AP, Meuse L, Pham T-TT et al (2002) RNA interference in adult mice. Nature 418:38–39

    Article  CAS  PubMed  Google Scholar 

  3. Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci 99:1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paddison PJ, Hannon GJ (2002) RNA interference: the new somatic cell genetics? Cancer Cell 21:17–23

    Article  Google Scholar 

  5. Giladi H, Ketzinel-Gilad M, Rivkin L et al (2003) Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther 8:769–776

    Article  CAS  PubMed  Google Scholar 

  6. McCaffrey AP, Nakai H, Pandey K et al (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21:639–644

    Article  CAS  PubMed  Google Scholar 

  7. McNamara JO, Andrechek ER, Wang Y et al (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. Nat Biotechnol 172:1005–1015

    Google Scholar 

  8. Campochiaro PA (2005) Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther 13:559–562

    Article  CAS  Google Scholar 

  9. Dorn G (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49–e49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    Article  CAS  PubMed  Google Scholar 

  11. Pulford B, Reim N, Bell A et al (2010) Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrPC on neuronal cells and PrPRES in infected cell cultures. PLoS One 5:e11085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pfeifer A, Eigenbrod S, Al-Khadra S et al (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Investig 116:3204–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White MD, Farmer M, Mirabile I (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci 105:10238–10243. https://doi.org/10.1073/pnas.0802759105.

    Article  CAS  Google Scholar 

  14. Dissen GA, Lomniczi A, Neff TL et al (2009) In vivo manipulation of gene expression in non-human primates using lentiviral vectors as delivery vehicles. Methods 49:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lundberg C, Bjorklund T, Carlsson T (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8(6):461–473

    Article  CAS  PubMed  Google Scholar 

  16. Nanou A, Azzouz M (2009) Gene therapy for neurodegenerative diseases based on lentiviral vectors. Prog Brain Res 175:187–200

    Article  CAS  PubMed  Google Scholar 

  17. Mulligan RC (1993) The basic science of gene therapy. Science 260:926–932

    Article  CAS  PubMed  Google Scholar 

  18. Quinonez R, Sutton RE (2002) Lentiviral vectors for gene delivery into cells. DNA Cell Biol 21:937–951

    Article  CAS  PubMed  Google Scholar 

  19. Subramanya S, Kim S-S, Manjunath N et al (2009) RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA? Expert Opin Biol Ther 10:201–213

    Article  Google Scholar 

  20. Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Investig 117:3623–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu Y-L, Ali A, Chu C-Y et al (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11:1165–1175

    Article  CAS  PubMed  Google Scholar 

  22. Meade BR, Dowdy SF (2008) Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev 60:530–536

    Article  CAS  PubMed  Google Scholar 

  23. Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    Article  CAS  PubMed  Google Scholar 

  24. Lafon M (2005) Rabies virus receptors. J Neurovirol 11:82–87

    Article  CAS  PubMed  Google Scholar 

  25. Lentz TL, Burrage TG, Smith AL et al (1982) Is the acetylcholine receptor a rabies virus receptor? Science 215:182–184

    Article  CAS  PubMed  Google Scholar 

  26. Barichello JM, Ishida T, Kiwada H (2010) Complexation of siRNA and pDNA with cationic liposomes: the important aspects in lipoplex preparation. Methods Mol Biol 605:461–472

    Article  CAS  PubMed  Google Scholar 

  27. Leng Q, Woodle MC, Lu PY et al (2009) Advances in systemic siRNA delivery. Drugs Future 34(9):721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leng Q, Mixson AJ (2005) Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 12:682–690

    Article  CAS  PubMed  Google Scholar 

  29. Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  CAS  PubMed  Google Scholar 

  30. Rothdiener M, Müller D, Castro PG et al (2010) NANOMEDICINE. J Control Release 144:251–258

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann TS, Lee ACH, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  CAS  PubMed  Google Scholar 

  32. Malone RW, Felgner PL, Verma IM (1989) Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci 86:6077–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Felgner PL, Gadek TR, Holm M et al (2007) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci 84:7413–7417

    Article  Google Scholar 

  34. Balazs DA, Godbey WT (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:1–12

    Article  CAS  Google Scholar 

  35. Escriou V, Ciolina C, Helbling-Leclerc A et al (1998) Cationic lipid-mediated gene transfer: analysis of cellular uptake and nuclear import of plasmid DNA. Cell Biol Toxicol 14:95–104

    Article  CAS  PubMed  Google Scholar 

  36. Elouahabi A, Ruysschaert J-M (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11:336–347

    Article  CAS  PubMed  Google Scholar 

  37. Zuhorn IS, Bakowsky U, Polushkin E et al (2005) Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 11:801–810

    Article  CAS  PubMed  Google Scholar 

  38. Srinivasan C, Burgess DJ (2009) Gene delivery. J Control Release 136:62–70

    Article  CAS  PubMed  Google Scholar 

  39. Lakkaraju A (2001) Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem 276:32000–32007

    Article  CAS  PubMed  Google Scholar 

  40. Patil SD, Rhodes DG, Burgess DJ (2004) Anionic liposomal delivery system for DNA transfection. AAPS J 6:e29

    Article  PubMed  Google Scholar 

  41. Sorgi FL, Bhattacharya S, Huang L (1997) Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther 4:961–968

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Rizzo MA, Bhattacharya S et al (1998) Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 5:930–937

    Article  CAS  PubMed  Google Scholar 

  43. Li S, Huang L (1997) In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther 4:891–900

    Article  CAS  PubMed  Google Scholar 

  44. Uno Y, Piao W, Miyata K et al (2011) High-density lipoprotein facilitates in vivo delivery of α-tocopherol–conjugated short-interfering RNA to the brain. Hum Gene Ther 22:711–719

    Article  CAS  PubMed  Google Scholar 

  45. Harrington KJ, Rowlinson-Busza G, Syrigos KN et al (2000) Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies. Br J Cancer 83:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baru M, Carmel-Goren L, Barenholz Y (2005) Factor VIII efficient and specific non-covalent binding to PEGylated liposomes enables prolongation of its circulation time and haemostatic efficacy. Thromb Haemost 93(6):1061–1068

    Article  CAS  PubMed  Google Scholar 

  47. Papahadjopoulos D, Allen TM, Gabizon A et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci 88:11460–11464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harrington KJ, Rowlinson-Busza G, Syrigos KN (2000) Pegylated liposome-encapsulated doxorubicin and cisplatin enhance the effect of radiotherapy in a tumor xenograft model. Clin Cancer Res 6(12):4939–4949

    CAS  PubMed  Google Scholar 

  49. Harrington KJ, Lewanski CR, Stewart JS (2000) Liposomes as vehicles for targeted therapy of cancer. Part 2: clinical development. Clin Oncol (R Coll Radiol) 12:16–24

    CAS  Google Scholar 

  50. Goebel FD, Goldstein D, Goos M et al (1996) Efficacy and safety of Stealth liposomal doxorubicin in AIDS-related Kaposi’s sarcoma. The International SL-DOX Study Group. Br J Cancer 73:989–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Northfelt DW, Dezube BJ, Thommes JA et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 16:2445–2451

    Article  CAS  Google Scholar 

  52. Zamboni WC, Ramalingam S, Friedland DM et al (2009) Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin Cancer Res 15:1466–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muggia FM, Hainsworth JD, Jeffers S et al (1997) Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 15:987–993

    Article  CAS  PubMed  Google Scholar 

  54. Ranson MR, Carmichael J, O'Byrne K et al (1997) Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol Off J Am Soc Clin Oncol 15:3185–3191

    Article  CAS  Google Scholar 

  55. Chekhonin VP, Zhirkov YA, Gurina OI et al (2008) PEGylated immunoliposomes directed against brain astrocytes. Drug Deliv 12:1–6

    Article  CAS  Google Scholar 

  56. Matveeva O, Nechipurenko Y, Rossi L et al (2007) Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res 35:e63–e63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Zabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zabel, M.D., Mollnow, L., Bender, H. (2019). Lipopeptide Delivery of siRNA to the Central Nervous System. In: Ogris, M., Sami, H. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 1943. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9092-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9092-4_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9091-7

  • Online ISBN: 978-1-4939-9092-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics