Skip to main content

Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1943))

Abstract

For gene therapy to work in vivo, nucleic acids need to reach the target cells without causing major side effects to the patient. In many cases the gene only has to reach a subset of cells in the body. Therefore, targeted delivery of genes to the desired tissue is a major issue in gene delivery. Many different possibilities of targeted gene delivery have been studied. A physical approach to target nucleic acids and other drugs to specific regions in the body is the use of ultrasound and microbubbles. Microbubbles are gas filled spheres with a stabilizing lipid, protein, or polymer shell. When these microbubbles enter an ultrasonic field, they start to oscillate. The bubbles’ expansion and compression are inversely related to the pressure phases in the ultrasonic field. When microbubbles are exposed to high-intensity ultrasound the microbubbles will eventually implode and fragment. This generates shockwaves and microjets which can temporarily permeate cell membranes and blood vessels. Nucleic acids or (non)viral vectors can as a result gain direct access to either the cytoplasm of neighboring cells, or extravasate to the surrounding tissue. The nucleic acids can either be mixed with the microbubbles or loaded on the microbubbles. Nucleic acid loaded microbubbles can be obtained by coupling nucleic acid-containing particles (i.e., lipoplexes) to the microbubbles. Upon ultrasound-mediated implosion of the microbubbles, the nucleic acid-containing particles will be released and will deliver their nucleic acids in the ultrasound-targeted region.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  CAS  Google Scholar 

  2. Duvshani-Eshet M, Machluf M (2005) Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Release 108:513–528

    Article  CAS  Google Scholar 

  3. Shapiro G, Wong AW, Bez M, Yang F, Tam S, Even L, Sheyn D, Ben-David S, Tawackoli W, Pelled G, Ferrara KW, Gazit D (2016) Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 223:157–164

    Article  CAS  Google Scholar 

  4. Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT (2014) Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliver Rev 72C:49–64

    Article  Google Scholar 

  5. Schlegel P, Huditz R, Meinhardt E, Rapti K, Geis N, Most P, Katus HA, Muller OJ, Bekeredjian R, Raake PW (2016) Locally targeted cardiac gene delivery by AAV microbubble destruction in a large animal model. Hum Gene Ther Methods 27:71–78

    Article  CAS  Google Scholar 

  6. Kinoshita M, Hynynen K (2005) Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound. Pharm Res 22:716–720

    Article  CAS  Google Scholar 

  7. Manome Y, Nakayama N, Nakayama K, Furuhata H (2005) Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol 31:693–702

    Article  Google Scholar 

  8. Koch S, Pohl P, Cobet U, Rainov NG (2000) Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 26:897–903

    Article  CAS  Google Scholar 

  9. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027

    Article  CAS  Google Scholar 

  10. Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 28:817–822

    Article  Google Scholar 

  11. Teupe C, Richter S, Fisslthaler B, Randriamboavonjy V, Ihling C, Fleming I, Busse R, Zeiher AM, Dimmeler S (2002) Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. Circulation 105:1104–1109

    Article  CAS  Google Scholar 

  12. Jin QF, Wang ZY, Yan F, Deng ZT, Ni F, Wu JR, Shandas R, Liu X, Zheng HR (2013) A novel cationic microbubble coated with stearic acid-modified polyethylenimine to enhance DNA loading and gene delivery by ultrasound. PLoS One 8:e76544

    Article  CAS  Google Scholar 

  13. Li JL, Zhou P, Li L, Zhang Y, Shao Y, Tang L, Tian SM (2016) Effects of cationic microbubble carrying CD/TK double suicide gene and alpha(V)beta(3) integrin antibody in human hepatocellular carcinoma HepG2 cells. PLoS One 11:e0158592

    Article  Google Scholar 

  14. De Temmerman ML, Dewitte H, Vandenbroucke RE, Lucas B, Libert C, Demeester J, De Smedt SC, Lentacker I, Rejman J (2011) mRNA-lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 32:9128–9135

    Article  Google Scholar 

  15. Dewitte H, Van Lint S, Heirman C, Thielemans K, De Smedt SC, Breckpot K, Lentacker I (2014) The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J Control Release 194:28–36

    Article  CAS  Google Scholar 

  16. Lentacker I, De Smedt SC, Demeester J, Van Marck V, Bracke M, Sanders NN (2007) Lipoplex-loaded microbubbles for gene delivery: a Trojan horse controlled by ultrasound. Adv Funct Mater 17:1910–1916

    Article  CAS  Google Scholar 

  17. Lentacker I, De Smedt S, Sanders N (2008) Circumventing the endocytotic uptake of highly PEGylated lipoplexes by using lipoplex loaded microbubbles and ultrasound can drastically increase their transfection efficiency. Hum Gene Ther 19:1095–1095

    Google Scholar 

  18. Luan Y, Lajoinie G, Gelderblom E, Skachkov I, van der Steen AF, Vos HJ, Versluis M, De Jong N (2014) Lipid shedding from single oscillating microbubbles. Ultrasound Med Biol 40:1834–1846

    Article  Google Scholar 

  19. De Cock I, Lajoinie G, Versluis M, De Smedt SC, Lentacker I (2016) Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 83:294–307

    Article  Google Scholar 

  20. Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery—a general review. Expert Opin Drug Deliv 1:37–56

    Article  CAS  Google Scholar 

  21. Tinkov S, Bekeredjian R, Winter G, Coester C (2009) Microbubbles as ultrasound triggered drug carriers. J Pharm Sci 98:1935–1961

    Article  CAS  Google Scholar 

  22. Toft KG, Hustvedt SO, Hals PA, Oulie I, Uran S, Landmark K, Normann PT, Skotland T (2006) Disposition of perfluorobutane in rats after intravenous injection of Sonazoid. Ultrasound Med Biol 32:107–114

    Article  Google Scholar 

  23. Grayburn PA (2002) Current and future contrast agents. Echocardiography 19:259–265

    Article  Google Scholar 

  24. Klibanov AL (1999) Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37:139–157

    Article  CAS  Google Scholar 

  25. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56:1291–1314

    Article  CAS  Google Scholar 

  26. Kooiman K, Vos HJ, Versluis M, de Jong N (2014) Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 72:28–48

    Article  CAS  Google Scholar 

  27. Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT (2014) Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 72:49–64

    Article  CAS  Google Scholar 

  28. van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112:149–155

    Article  Google Scholar 

  29. Newman CM, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  Google Scholar 

  30. Helfield B, Chen X, Watkins SC, Villanueva FS (2016) Biophysical insight into mechanisms of sonoporation. Proc Natl Acad Sci U S A 113:9983–9988

    Article  CAS  Google Scholar 

  31. De Cock I, Zagato E, Braeckmans K, Luan Y, de Jong N, De Smedt SC, Lentacker I (2015) Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J Control Release 197:20–28

    Article  Google Scholar 

  32. Geers B, Lentacker I, Alonso A, Sanders NN, Demeester J, Meairs S, De Smedt SC (2011) Elucidating the mechanisms behind sonoporation with adeno-associated virus-loaded microbubbles. Mol Pharm 8:2244–2251

    Article  CAS  Google Scholar 

  33. Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN (2010) Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 18:101–108

    Article  CAS  Google Scholar 

  34. Lentacker I, Wang N, Vandenbroucke RE, Demeester J, De Smedt SC, Sander NN (2009) Ultrasound exposure of lipoplex loaded microbubbles facilitates direct cytoplasmic entry of the lipoplexes. Mol Pharm 6:457–467

    Article  CAS  Google Scholar 

  35. Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, De Smedt SC (2007) Nucleic acid delivery: where material sciences and bio-sciences meet. Mater Sci Eng R 58:117–161

    Article  Google Scholar 

  36. Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN (2008) Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release 126:265–273

    Article  CAS  Google Scholar 

  37. Carugo D, Owen J, Crake C, Lee JY, Stride E (2015) Biologically and acoustically compatible chamber for studying ultrasound-mediated delivery of therapeutic compounds. Ultrasound Med Biol 41:1927–1937

    Article  Google Scholar 

  38. Cool SK, Geers B, Roels S, Stremersch S, Vanderperren K, Saunders JH, De Smedt SC, Demeester J, Sanders NN (2013) Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice. J Control Release 172:885–893

    Article  CAS  Google Scholar 

  39. Palussiere J, Salomir R, Le Bail B, Fawaz R, Quesson B, Grenier N, Moonen CT (2003) Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh. Magn Reson Med 49:89–98

    Article  Google Scholar 

  40. Dimcevski G, Kotopoulis S, Bjanes T, Hoem D, Schjott J, Gjertsen BT, Biermann M, Molven A, Sorbye H, McCormack E, Postema M, Gilja OH (2016) A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 243:172–181

    Article  CAS  Google Scholar 

  41. Theek B, Baues M, Ojha T, Mockel D, Veettil SK, Steitz J, van Bloois L, Storm G, Kiessling F, Lammers T (2016) Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J Control Release 231:77–85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ine Lentacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dewitte, H., Roovers, S., De Smedt, S.C., Lentacker, I. (2019). Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles. In: Ogris, M., Sami, H. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 1943. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9092-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9092-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9091-7

  • Online ISBN: 978-1-4939-9092-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics