Skip to main content

Layer-By-Layer Film Engineering for Sequential Gene Delivery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1943))

Abstract

Layer-by-layer (LbL) films are assembled with poly(amido amine)s (PAAs), a type of polycations containing bioreducible disulfide bond, and DNA plasmids to enable LbL film degradation in physiologic conditions by reacting with glutathione or redox-active membrane proteins. The interior layer structure of the LbL films during assembly and disassembly is studied by atomic force microscopy (AFM), ellipsometry, dynamic light scattering (DLS), and fluorescence spectroscopy. Insertion of barrier layers in bioreducible LbL films is necessary to stabilize the interior layer structure and slow down the film degradation rate to achieve sequential gene delivery. Localized gene delivery from the LbL films is demonstrated using human embryonic kidney 293 (HEK 293) cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 32(8–9):799–837. https://doi.org/10.1016/j.progpolymsci.2007.05.007

    Article  CAS  Google Scholar 

  2. Tatum EL (1966) Molecular biology, nucleic acids, and the future of medicine. Perspect Biol Med 10(1):19–32

    Article  CAS  Google Scholar 

  3. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. https://doi.org/10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  4. Werner S, Huck O, Frisch B, Vautier D, Elkaim R, Voegel JC, Brunel G, Tenenbaum H (2009) The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials 30(12):2291–2301. https://doi.org/10.1016/j.biomaterials.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Chua PH, Neoh KG, Kang ET, Wang W (2008) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29(10):1412–1421. https://doi.org/10.1016/j.biomaterials.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  6. Jewell CM, Zhang JT, Fredin NJ, Wolff MR, Hacker TA, Lynn DM (2006) Release of plasmid DNA from intravascular stents coated with ultrathin multilayered polyelectrolyte films. Biomacromolecules 7(9):2483–2491. https://doi.org/10.1021/bm0604808

    Article  CAS  PubMed  Google Scholar 

  7. Yamauchi F, Koyamatsu Y, Kato K, Iwata H (2006) Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer. Biomaterials 27(18):3497–3504. https://doi.org/10.1016/j.biomaterials.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Blacklock J, You YZ, Zhou QH, Mao GZ, Oupicky D (2009) Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA. Biomaterials 30(5):939–950. https://doi.org/10.1016/j.biomaterials.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  9. DeMuth PC, Min YJ, Huang B, Kramer JA, Miller AD, Barouch DH, Hammond PT, Irvine DJ (2013) Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 12(4):367–376. https://doi.org/10.1038/Nmat3550

    Article  CAS  PubMed  Google Scholar 

  10. DeMuth PC, Li AV, Abbink P, Liu JY, Li HL, Stanley KA, Smith KM, Lavine CL, Seaman MS, Kramer JA, Miller AD, Abraham W, Suh H, Elkhader J, Hammond PT, Barouch DH, Irvine DJ (2013) Vaccine delivery with microneedle skin patches in nonhuman primates. Nat Biotechnol 31(12):1082–1085. https://doi.org/10.1038/nbt.2759

    Article  CAS  PubMed  Google Scholar 

  11. DeMuth PC, Moon JJ, Suh H, Hammond PT, Irvine DJ (2012) Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 6(9):8041–8051. https://doi.org/10.1021/nn302639r

    Article  CAS  PubMed  Google Scholar 

  12. Lavalle P, Gergely C, Cuisinier FJG, Decher G, Schaaf P, Voegel JC, Picart C (2002) Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study. Macromolecules 35(11):4458–4465. https://doi.org/10.1021/ma0119833

    Article  CAS  Google Scholar 

  13. Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, Voegel JC, Lavalle P (2002) Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A 99(20):12531–12535. https://doi.org/10.1073/pnas.202486099

    Article  CAS  PubMed  Google Scholar 

  14. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20. https://doi.org/10.1021/nn900002m

    Article  CAS  PubMed  Google Scholar 

  15. Forrest ML, Koerber JT, Pack DW (2003) A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug Chem 14(5):934–940. https://doi.org/10.1021/bc034014g

    Article  CAS  PubMed  Google Scholar 

  16. Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliver Rev 55(2):199–215 S0169-409x(02)00179–5

    Article  CAS  Google Scholar 

  17. Becker AL, Johnston APR, Caruso F (2010) Layer-by-layer-assembled capsules and films for therapeutic delivery. Small 6(17):1836–1852. https://doi.org/10.1002/smll.201000379

    Article  CAS  PubMed  Google Scholar 

  18. Zou Y, Xie L, Carroll S, Muniz M, Gibson H, Wei W-Z, Liu H, Mao G (2014) Layer-by-layer films with bioreducible and nonbioreducible polycations for sequential DNA release. Biomacromolecules 15(11):3965–3975

    Article  CAS  Google Scholar 

  19. Schlenoff JB, Dubas ST (2001) Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules 34(3):592–598. https://doi.org/10.1021/ma0003093

    Article  CAS  Google Scholar 

  20. Laschewsky A, Wischerhoff E, Denzinger S, Ringsdorf H, Delcorte A, Bertrand P (1997) Molecular recognition by hydrogen bonding in polyelectrolyte multilayers. Chem Eur J 3(1):34–38. https://doi.org/10.1002/chem.19970030107

    Article  CAS  Google Scholar 

  21. Elbert DL, Herbert CB, Hubbell JA (1999) Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15(16):5355–5362. https://doi.org/10.1021/la9815749

    Article  CAS  Google Scholar 

  22. Picart C, Lavalle P, Hubert P, Cuisinier FJG, Decher G, Schaaf P, Voegel JC (2001) Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17(23):7414–7424. https://doi.org/10.1021/la010848g

    Article  CAS  Google Scholar 

  23. Losche M, Schmitt J, Decher G, Bouwman WG, Kjaer K (1998) Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 31(25):8893–8906. https://doi.org/10.1021/ma980910p

    Article  Google Scholar 

  24. Wood KC, Chuang HF, Batten RD, Lynn DM, Hammond PT (2006) Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proc Natl Acad Sci U S A 103(27):10207–10212. https://doi.org/10.1073/pnas.0602884103

    Article  CAS  PubMed  Google Scholar 

  25. Vazquez E, Dewitt DM, Hammond PT, Lynn DM (2002) Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes. J Am Chem Soc 124(47):13992–13993. https://doi.org/10.1021/ja026405w

    Article  CAS  PubMed  Google Scholar 

  26. Zhang JT, Fredin NJ, Janz JF, Sun B, Lynn DM (2006) Structure/property relationships in erodible multilayered films: Influence of polycation structure on erosion profiles and the release of anionic polyelectrolytes. Langmuir 22(1):239–245. https://doi.org/10.1021/052360b

    Article  PubMed  Google Scholar 

  27. Chen J, Huang SW, Lin WH, Zhuo RX (2007) Tunable film degradation and sustained release of plasmid DNA from cleavable polycation/plasmid DNA multilayers under reductive conditions. Small 3(4):636–643. https://doi.org/10.1002/smll.200600301

    Article  CAS  PubMed  Google Scholar 

  28. Lynn DM (2007) Peeling back the layers: controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Adv Mater 19(23):4118–4130. https://doi.org/10.1002/adma.200701748

    Article  CAS  Google Scholar 

  29. Lavalle P, Picart C, Mutterer J, Gergely C, Reiss H, Voegel JC, Senger B, Schaaf P (2004) Modeling the buildup of polyelectrolyte multilayer films having exponential growth. J Phys Chem B 108(2):635–648. https://doi.org/10.1021/jp035740j

    Article  CAS  Google Scholar 

  30. Xu L, Pristinski D, Zhuk A, Stoddart C, Ankner JF, Sukhishvili SA (2012) Linear versus exponential growth of weak polyelectrolyte multilayers: correlation with polyelectrolyte complexes. Macromolecules 45(9):3892–3901. https://doi.org/10.1021/ma300157p

    Article  CAS  Google Scholar 

  31. Blacklock J, You Y-Z, Zhou Q-H, Mao G, Oupický D (2009) Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA. Biomaterials 30(5):939–950

    Article  CAS  Google Scholar 

  32. Wan L, You Y, Zou Y, Oupicky D, Mao G (2009) DNA release dynamics from bioreducible poly(amido amine) polyplexes. J Phys Chem B 113(42):13735–13741. https://doi.org/10.1021/jp901835u

    Article  CAS  PubMed  Google Scholar 

  33. Wu DC, Liu Y, Chen L, He CB, Chung TS, Goh SH (2005) 2A(2)+BB-B approach to hyperbranched poly(amino ester)s. Macromolecules 38(13):5519–5525. https://doi.org/10.1021/ma047580v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhao Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xie, L., Zou, Y., Carroll, S., Muniz, M., Mao, G. (2019). Layer-By-Layer Film Engineering for Sequential Gene Delivery. In: Ogris, M., Sami, H. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 1943. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9092-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9092-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9091-7

  • Online ISBN: 978-1-4939-9092-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics