Skip to main content

How to Develop a Drug Target Ontology: KNowledge Acquisition and Representation Methodology (KNARM)

  • Protocol
  • First Online:
Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1939))

Abstract

Technological advancements in many fields have led to huge increases in data production, including data volume, diversity, and the speed at which new data is becoming available. In accordance with this, there is a lack of conformity in the ways data is interpreted. This era of “big data” provides unprecedented opportunities for data-driven research and “big picture” models. However, in-depth analyses—making use of various data types and data sources and extracting knowledge—have become a more daunting task. This is especially the case in life sciences where simplification and flattening of diverse data types often lead to incorrect predictions. Effective applications of big data approaches in life sciences require better, knowledge-based, semantic models that are suitable as a framework for big data integration, while avoiding oversimplifications, such as reducing various biological data types to the gene level. A huge hurdle in developing such semantic knowledge models, or ontologies, is the knowledge acquisition bottleneck. Automated methods are still very limited, and significant human expertise is required. In this chapter, we describe a methodology to systematize this knowledge acquisition and representation challenge, termed KNowledge Acquisition and Representation Methodology (KNARM). We then describe application of the methodology while implementing the Drug Target Ontology (DTO). We aimed to create an approach, involving domain experts and knowledge engineers, to build useful, comprehensive, consistent ontologies that will enable big data approaches in the domain of drug discovery, without the currently common simplifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruber TR (1993) Towards principles for the Design of Ontologies Used for knowledge sharing. Int J Hum Comput Stud 43(5–6):907–928

    Google Scholar 

  2. CommonKADS CommonKADS. http://commonkads.org/

  3. Schreiber G, Wielinga B, de Hoog R, Akkermans H, Van de Velde W (1994) CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9(6):28–37

    Article  Google Scholar 

  4. Barnes JC (2002) Conceptual biology: a semantic issue and more. Nature 417(6889):587–588

    Article  CAS  PubMed  Google Scholar 

  5. Blagosklonny MV, Pardee AB (2002) Conceptual biology: unearthing the gems. Nature 416(6879):373–373

    Article  CAS  PubMed  Google Scholar 

  6. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) GenBank. Nucleic Acids Res 28(1):15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heflin J, Hendler J (2000) Semantic interoperability on the web. Maryland University, College Park, Department of Computer Science, Maryland

    Book  Google Scholar 

  8. Noy NF, Fergerson RW, Musen MA (2000) The knowledge model of Protege-2000: combining interoperability and flexibility. In: Knowledge engineering and knowledge management methods, models, and tools. Springer, New York, pp 17–32

    Chapter  Google Scholar 

  9. Stevens R, Goble CA, Bechhofer S (2000) Ontology-based knowledge representation for bioinformatics. Brief Bioinform 1(4):398–414

    Article  CAS  PubMed  Google Scholar 

  10. Wache H, Voegele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H, Hübner S (2001) Ontology-based integration of information-a survey of existing approaches. In: IJCAI-01 workshop: ontologies and information sharing. Citeseer, New Jersey, pp 108–117

    Google Scholar 

  11. Yeh I, Karp PD, Noy NF, Altman RB (2003) Knowledge acquisition, consistency checking and concurrency control for gene ontology (GO). Bioinformatics 19(2):241–248

    Article  CAS  PubMed  Google Scholar 

  12. Degtyarenko K, De Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36(suppl 1):D344–D350

    CAS  PubMed  Google Scholar 

  13. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2010) The description logic handbook: theory, implementation and applications, 2nd edn. Cambridge University Press, New York, NY

    Google Scholar 

  14. Buchanan BG, Barstow D, Bechtal R, Bennett J, Clancey W, Kulikowski C, Mitchell T, Waterman DA (1983) Constructing an expert system. Build Exper Sys 50:127–167

    Google Scholar 

  15. Natale DA, Arighi CN, Blake JA, Bona J, Chen C, Chen S-C, Christie KR, Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Duncan WD, Huang H, Ren J, Ross K, Ruttenberg A, Shamovsky V, Smith B, Wang Q, Zhang J, El-Sayed A, Wu CH (2011) The representation of protein complexes in the protein ontology (PRO). BMC bioinformatics 12(1):1

    Article  Google Scholar 

  16. Clark AM, Litterman NK, Kranz JE, Gund P, Gregory K, Bunin BA, Cao L (2016) BioAssay templates for the semantic web data science: challenges and directions. PeerJ Comput Sci 2(8):e61

    Article  Google Scholar 

  17. Belleau F, Nolin M-A, Tourigny N, Rigault P, Morissette J (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 41(5):706–716

    Article  PubMed  Google Scholar 

  18. Cook CE, Bergman MT, Finn RD, Cochrane G, Birney E, Apweiler R (2015) The European bioinformatics institute in 2016: data growth and integration. Nucleic Acids Res 44(D1):D20–D26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hitzler P, Krötzsch M, Rudolph S (2009) Foundations of semantic web technologies. Chapman and Hall (CRC), Florida

    Book  Google Scholar 

  20. Küçük-Mcginty H, Metha S, Lin Y, Nabizadeh N, Stathias V, Vidovic D, Koleti A, Mader C, Duan J, Visser U (2016) Schurer S IT405: building concordant ontologies for drug discovery. In: International conference on biomedical ontology and BioCreative. (ICBO BioCreative 2016), Oregon

    Google Scholar 

  21. Schurer SC, Vempati U, Smith R, Southern M, Lemmon V (2011) BioAssay ontology annotations facilitate cross-analysis of diverse high-throughput screening data sets. J Biomol Screen 16(4):415–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ et al (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, Musen MA (2011) BioPortal: enhanced functionality via new web services from the National Center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Res 39(2):W541–W545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Y, Mehta S, Küçük-McGinty H, Turner JP, Vidovic D, Forlin M, Koleti A, Nguyen D-T, Jensen LJ, Guha R, Mathias SL, Ursu O, Stathias V, Duan J, Nabizadeh N, Chung C, Mader C, Visser U, Yang JJ, Bologa CG, Oprea TI, Schürer SC (2017) Drug target ontology to classify and integrate drug discovery data. J Biomed Semantics 8(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma'ayan A (2017) Complex systems biology. J R Soc Interface 14(134):1742–5689

    Article  Google Scholar 

  26. Abeyruwan S, Vempati UD, Küçük-McGinty H, Visser U, Koleti A, Mir A, Sakurai K, Chung C, Bittker JA, Clemons PA, Chung C, Bittker JA, Clemons PA, Brudz S, Siripala A, Morales AJ, Romacker M, Twomey D, Bureeva S, Lemmon V, Schürer SC (2014) Evolving BioAssay ontology (BAO): modularization, integration and applications. J Biomed Semantics 5(Suppl 1):S5

    Article  PubMed  PubMed Central  Google Scholar 

  27. BAOSearch. http://baosearch.ccs.miami.edu/

  28. Visser U, Abeyruwan S, Vempati U, Smith R, Lemmon V, Schurer S (2011) BioAssay ontology (BAO): a semantic description of bioassays and high-throughput screening results. BMC Bioinformatics 12(1):257

    Article  PubMed  PubMed Central  Google Scholar 

  29. Drug Target Ontology. http://drugtargetontology.org/

  30. Brinkman RR, Courtot M, Derom D, Fostel JM, He Y, Lord P, Malone J, Parkinson H, Peters B, Rocca-Serra P, Ruttenberg A, Sansone SA, Soldatova LN, Stoeckert CJ Jr, Turner JA, Zheng J (2010) Modeling biomedical experimental processes with OBI. J Biomed Semantics 1(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Callahan A, Cruz-Toledo J, Dumontier M (2013) Ontology-based querying with Bio2RDF’s linked open data. Journal of Biomedical Semantics 4(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ceusters W, Smith B (2006) A realism-based approach to the evolution of biomedical ontologies. AMIA Annu Symp Proc:121–125

    Google Scholar 

  33. Consortium TGO (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(D1):D1049–D1056. https://doi.org/10.1093/nar/gku1179

    Article  CAS  Google Scholar 

  34. Decker S, Erdmann M, Fensel D, Studer R (1999) Ontobroker: ontology based access to distributed and semi-structured information. In: Database semantics. Springer, New York, pp 351–369

    Chapter  Google Scholar 

  35. Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  36. Köhler J, Philippi S, Lange M (2003) SEMEDA: ontology based semantic integration of biological databases. Bioinformatics 19(18):2420–2427

    Article  PubMed  CAS  Google Scholar 

  37. Ontology BF Basic Formal Ontology (BFO) Project. http://www.ifomis.org/bfo

  38. Pease A, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working notes of the AAAI-2002 workshop on ontologies and the semantic web

    Google Scholar 

  39. Sure Y, Erdmann M, Angele J, Staab S, Studer R, Wenke D (2002) OntoEdit: collaborative ontology development for the semantic web. Springer, New York

    Google Scholar 

  40. Welty CA, Fikes R (2006) A reusable ontology for Fluents in OWL. In: Formal ontology in information systems Frontiers in artificial Intel. And apps. IOS, pp 226–236

    Google Scholar 

  41. NIH Illuminating the Druggable Genome | NIH Common Fund. https://commonfund.nih.gov/idg/index

  42. TCRD Database. http://habanero.health.unm.edu/tcrd/

  43. Hamosh AS, Alan F, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  CAS  PubMed  Google Scholar 

  44. Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ (2015) DISEASES: text mining and data integration of disease–gene associations. Methods 74:83–89

    Article  CAS  PubMed  Google Scholar 

  45. NCBI (2017) https://www.ncbi.nlm.nih.gov/gene/about-generif. 2017

  46. Kiermer V (2008) Antibodypedia. Nat Methods 5(10):860–860

    Article  CAS  Google Scholar 

  47. Santos A, Tsafou K, Stolte C, Pletscher-Frankild S, O’Donoghue SI, Jensen LJ (2015) Comprehensive comparison of large-scale tissue expression datasets. PeerJ 3:e1054

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sugen and the Salk Institute. (2012). http://kinase.com/human/kinome/phylogeny.html

  49. Consortium TU (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(D1):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  50. Przydzial MJ, Bhhatarai B, Koleti A, Vempati U, Schürer SC (2013) GPCR ontology: development and application of a G protein-coupled receptor pharmacology knowledge framework. Bioinformatics 29(24):3211–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SP, Buneman OP, Davenport AP, JC MG, Peters JA, Southan C, Spedding M, Yu W, Harmar AJ, NC-IUPHAR (2013) The IUPHAR/BPS guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42(D1):D1098–D1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Vidović D, Koleti A, Schürer SC (2014) Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action. Front Genet 5:342

    PubMed  PubMed Central  Google Scholar 

  53. Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop distributed file system. In: Proceedings of the 2010 IEEE 26th symposium on mass storage systems and technologies (MSST). IEEE Computer Society, Washington, DC, USA, pp 1–10

    Google Scholar 

Download references

Acknowledgments and Funding

This work was supported by NIH grants U54CA189205 (Illuminating the Druggable Genome Knowledge Management Center, IDG-KMC), U24TR002278 (Illuminating the Druggable Genome Resource Dissemination and Outreach Center, IDG-RDOC), U54HL127624 (BD2K LINCS Data Coordination and Integration Center, DCIC), and U01LM012630-02 (BD2K, Enhancing the efficiency and effectiveness of digital curation for biomedical “big data ”). The IDG-KMC and IDG-RDOC (http://druggablegenome.net/) are components of the Illuminating the Druggable Genome (IDG) project (https://commonfund.nih.gov/idg) awarded by the National Cancer Institute (NCI) and National Center for Advancing Translational Sciences (NCATS), respectively. The BD2K LINC DCIC is awarded by the National Heart, Lung, and Blood Institute through funds provided by the trans-NIH Library of Integrated Network-Based Cellular Signatures (LINCS ) Program (http://www.lincsproject.org/) and the trans-NIH Big Data to Knowledge (BD2K) initiative (https://commonfund.nih.gov/bd2k). IDG, LINCS, and BD2K are NIH Common Fund projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schürer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Küçük McGinty, H., Visser, U., Schürer, S. (2019). How to Develop a Drug Target Ontology: KNowledge Acquisition and Representation Methodology (KNARM). In: Larson, R., Oprea, T. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 1939. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9089-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9089-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9088-7

  • Online ISBN: 978-1-4939-9089-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics