Skip to main content

Omics Data Integration and Analysis for Systems Pharmacology

  • Protocol
  • First Online:
Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1939))

Abstract

Systems pharmacology aims to understand drug actions on a multi-scale from atomic details of drug-target interactions to emergent properties of biological network and rationally design drugs targeting an interacting network instead of a single gene. Multifaceted data-driven studies, including machine learning-based predictions, play a key role in systems pharmacology. In such works, the integration of multiple omics data is the key initial step, followed by optimization and prediction. Here, we describe the overall procedures for drug-target association prediction using REMAP, a large-scale off-target prediction tool. The method introduced here can be applied to other relation inference problems in systems pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discov Today 2(10):436–444. https://doi.org/10.1016/S1359-6446(97)01099-4

    Google Scholar 

  2. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47(3):550–557. https://doi.org/10.1021/jm030912m

    Google Scholar 

  3. Xie L, Wang J, Bourne PE (2007) In silico elucidation of the molecular mechanism defining the adverse effect of selective estrogen receptor modulators. PLoS Comput Biol 3(11):e217. https://doi.org/10.1371/journal.pcbi.0030217

    Google Scholar 

  4. Forrest MJ, Bloomfield D, Briscoe RJ, Brown PN, Cumiskey AM, Ehrhart J, Hershey JC, Keller WJ, Ma X, McPherson HE, Messina E, Peterson LB, Sharif-Rodriguez W, Siegl PK, Sinclair PJ, Sparrow CP, Stevenson AS, Sun SY, Tsai C, Vargas H, Walker M 3rd, West SH, White V, Woltmann RF (2008) Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br J Pharmacol 154(7):1465–1473. https://doi.org/10.1038/bjp.2008.229

    Google Scholar 

  5. Howes LG, Kostner K (2007) The withdrawal of torcetrapib from drug development: implications for the future of drugs that alter HDL metabolism. Expert Opin Investig Drugs 16(10):1509–1516. https://doi.org/10.1517/13543784.16.10.1509

    Google Scholar 

  6. Butler D, Callaway E (2016) Scientists in the dark after French clinical trial proves fatal. Nature 529(7586):263–264. https://doi.org/10.1038/nature.2016.19189

    Google Scholar 

  7. Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7(4):e1002037. https://doi.org/10.1371/journal.pcbi.1002037

    Google Scholar 

  8. Bertolini F, Sukhatme VP, Bouche G (2015) Drug repurposing in oncology--patient and health systems opportunities. Nat Rev Clin Oncol 12(12):732–742. https://doi.org/10.1038/nrclinonc.2015.169

    Google Scholar 

  9. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34(5):267–272. https://doi.org/10.1016/j.tips.2013.03.004

    Google Scholar 

  10. Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11(12):909–922. https://doi.org/10.1038/nrd3845

    Google Scholar 

  11. Hart T, Xie L (2016) Providing data science support for systems pharmacology and its implications to drug discovery. Expert Opin Drug Discov 11(3):241–256. https://doi.org/10.1517/17460441.2016.1135126

    Google Scholar 

  12. Xie L, Draizen EJ, Bourne PE (2017) Harnessing big data for systems pharmacology. Annu Rev Pharmacol Toxicol 57:245–262. https://doi.org/10.1146/annurev-pharmtox-010716-104659

    Google Scholar 

  13. Xie L, Xie L, Kinnings SL, Bourne PE (2012) Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu Rev Pharmacol Toxicol 52:361–379. https://doi.org/10.1146/annurev-pharmtox-010611-134630

    Google Scholar 

  14. Xie L, Ge X, Tan H, Xie L, Zhang Y, Hart T, Yang X, Bourne PE (2014) Towards structural systems pharmacology to study complex diseases and personalized medicine. PLoS Comput Biol 10(5):e1003554. https://doi.org/10.1371/journal.pcbi.1003554

    Google Scholar 

  15. Koutsoukas A, Lowe R, Kalantarmotamedi Y, Mussa HY, Klaffke W, Mitchell JB, Glen RC, Bender A (2013) In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass naive Bayes and Parzen-Rosenblatt window. J Chem Inf Model 53(8):1957–1966. https://doi.org/10.1021/ci300435j

    Google Scholar 

  16. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21):3036–3043. https://doi.org/10.1093/bioinformatics/btr500

    Google Scholar 

  17. van Laarhoven T, Marchiori E (2013) Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 8(6):e66952. https://doi.org/10.1371/journal.pone.0066952

    Google Scholar 

  18. Gonen M (2012) Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18):2304–2310. https://doi.org/10.1093/bioinformatics/bts360

    Google Scholar 

  19. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma'ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). https://doi.org/10.1093/database/baw100

  20. Lim H, Poleksic A, Yao Y, Tong H, He D, Zhuang L, Meng P, Xie L (2016) Large-scale off-target identification using fast and accurate dual regularized one-class collaborative filtering and its application to drug repurposing. PLoS Comput Biol 12(10):e1005135. https://doi.org/10.1371/journal.pcbi.1005135

    Google Scholar 

  21. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749. https://doi.org/10.1109/TKDE.2005.99

    Google Scholar 

  22. Bobadilla J, Ortega F, Hernando A, Bernal J (2012) A collaborative filtering approach to mitigate the new user cold start problem. Knowl Based Syst 26:225–238. https://doi.org/10.1016/j.knosys.2011.07.021

    Google Scholar 

  23. Lim H, Gray P, Xie L, Poleksic A (2016) Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem. Sci Rep 6:38860. https://doi.org/10.1038/srep38860

    Google Scholar 

  24. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. https://doi.org/10.1021/ci3001277

    Google Scholar 

  25. ChemAxon (2015) Screen was used for generating pharmacophore descriptors and screening structures, JChem 15.3.2.0.

    Google Scholar 

  26. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10(1):1

    Google Scholar 

  27. BLAST® Command Line Applications User Manual [Internet] (2008) National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK279690/. 2017.

  28. Creixell P, Palmeri A, Miller CJ, Lou HJ, Santini CC, Nielsen M, Turk BE, Linding R (2015) Unmasking determinants of specificity in the human kinome. Cell 163(1):187–201. https://doi.org/10.1016/j.cell.2015.08.057

    Google Scholar 

  29. Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc Natl Acad Sci U S A 105(14):5441–5446. https://doi.org/10.1073/pnas.0704422105

    Google Scholar 

  30. Chen C, Tong H, Xie L, Ying L, He Q (2016) FASCINATE: fast cross-layer dependency inference on multi-layered networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp. 765–774.

    Google Scholar 

Download references

Acknowledgment

We acknowledge Miriam Cohen, Ph.D., for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lim, H., Xie, L. (2019). Omics Data Integration and Analysis for Systems Pharmacology. In: Larson, R., Oprea, T. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 1939. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9089-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9089-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9088-7

  • Online ISBN: 978-1-4939-9089-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics