Skip to main content

One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1942))

Abstract

Human pluripotent stem cells (hPSCs) offer powerful platforms for studying mechanisms of human diseases and for evaluating potential treatments. Genome editing, particularly the CRISPR/Cas9-based method, is highly effective for generating cell and animal models to study genetic human diseases. However, the procedure for generating gene-edited hPSCs is laborious, time consuming and unintentional genetic changes may confound the consequent experiments and conclusions. Here we describe one-step knockin of the NanoLuc luciferase gene (Nluc) to the fragile X syndrome gene, FMR1, in a human embryonic stem cell line (hESC), H1, and a fragile X disease model human induced pluripotent stem cell line (hiPSC), FX-iPSC. The luciferase reporter cell lines provide new platforms for exploring potential treatments for fragile X syndrome. The shortened and scarless targeting method described here can be effectively applied to other genes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Avitzour M, Mor-Shaked H, Yanovsky-Dagan S et al (2014) FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Reports 3(5):699–706

    Article  CAS  Google Scholar 

  2. Doers ME, Musser MTF, Nichol R, Nichol RF, Berndt ER et al (2014) iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev 23(15):1777–1787

    Article  CAS  Google Scholar 

  3. Eiges R, Urbach A, Malcov M et al (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1(5):568–577

    Article  CAS  Google Scholar 

  4. Sheridan SD, Theriault KM, Reis SA et al (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6(10):e26203

    Article  CAS  Google Scholar 

  5. Kaufmann M, Schuffenhauer A, Fruh I et al (2015) High-throughput screening using iPSC-derived neuronal progenitors to identify compounds counteracting epigenetic gene silencing in fragile X syndrome. J Biomol Screen 20(9):1101–1111

    Article  CAS  Google Scholar 

  6. Kumari D, Swaroop M, Southall N et al (2015) High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl Med 4(7):800–808

    Article  CAS  Google Scholar 

  7. Jang SW, Lopez-Anido C, MacArthur R et al (2012) Identification of drug modulators targeting gene-dosage disease CMT1A. ACS Chem Biol 7(7):1205–1213

    Article  CAS  Google Scholar 

  8. Zhang SC, Wernig M, Duncan ID et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133

    Article  CAS  Google Scholar 

  9. http://crispr.mit.edu/. Accessed 16 Jan 2018

  10. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  Google Scholar 

  11. Debnath A, Parsonage D, Andrade RM et al (2012) A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat Med 18(6):956–960

    Article  CAS  Google Scholar 

  12. Li M, Zhao H, Ananiev GE et al (2017) Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells 35(1):158–169

    Article  CAS  Google Scholar 

  13. Yusa K (2013) Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protocols 8(10):2061–2078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (R01MH078972 to X.Z, U54HD090256 to the Waisman Center), John Merck Fund (to X.Z and AB), Jenni and Kyle Professorship (to X.Z), and a Rath Graduate Fellowship to JH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita Bhattacharyya or Xinyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, M., Hunt, J.F.V.S., Bhattacharyya, A., Zhao, X. (2019). One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells. In: Ben-Yosef, D., Mayshar, Y. (eds) Fragile-X Syndrome. Methods in Molecular Biology, vol 1942. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9080-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9080-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9079-5

  • Online ISBN: 978-1-4939-9080-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics