Skip to main content

Pathophysiology Mechanisms in Fragile-X Primary Ovarian Insufficiency

  • Protocol
  • First Online:
Book cover Fragile-X Syndrome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1942))

Abstract

Women who carry the FMR1 premutation may suffer from ongoing deterioration of ovarian function. The lucidity of the molecular mechanism of FXTAS is emerging and findings from research in the field of FXTAS could elucidate the pathogenesis of FXPOI. To date there are three possible mechanisms for ovarian dysfunction in FMR1 permutation carriers. The first is the RNA toxic gain-of-function mechanism initiating loss of function of over 30 specific RNA-binding proteins. The second is associated to the formation of an abnormal polyglycine-containing protein (FMRpolyG), and the third is related to novel lncRNAs, named FMR4 and FMR6. Herein we describe our laboratory methodology, focusing on the culturing and manipulation of granulosa cells from human female premutation carriers, trying to reveal the actual possible mechanisms liable to FXPOI. Detecting the precise pathways in premutation carrier might facilitate in offering these women the opportunity to make an informed decision regarding their reproductive and family planning.

Grant Sponsor: Azrieli research foundation Canada Israel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rousseau F, Heitz D, Biancalana V, Blumenfeld S, Kretz C, Boue J, Tommerup N, Van Der Hagen C, DeLozier-Blanchet C, Croquette MF et al (1991) Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med 325(24):1673–1681. https://doi.org/10.1056/NEJM199112123252401

    Article  CAS  PubMed  Google Scholar 

  2. Rovozzo R, Korza G, Baker MW, Li M, Bhattacharyya A, Barbarese E, Carson JH (2016) CGG repeats in the 5'UTR of FMR1 RNA regulate yranslation of other RNAs localized in the same RNA granules. PLoS One 11(12):e0168204. https://doi.org/10.1371/journal.pone.0168204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Willemsen R, Levenga J, Oostra BA (2011) CGG repeat in the FMR1 gene: size matters. Clin Genet 80(3):214–225. https://doi.org/10.1111/j.1399-0004.2011.01723.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saul RA, Tarleton JC (1993) In: Adam MP, Ardinger HH, Pagon RA et al (eds) FMR1-related disorders. GeneReviews((R)), Seattle, WA

    Google Scholar 

  5. Peprah E (2014) Understanding decreased fertility in women carriers of the FMR1 premutation: a possible mechanism for Fragile X-associated primary ovarian insufficiency (FXPOI). Reprod Health 11:67. https://doi.org/10.1186/1742-4755-11-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coffey SM, Cook K, Tartaglia N, Tassone F, Nguyen DV, Pan R, Bronsky HE, Yuhas J, Borodyanskaya M, Grigsby J, Doerflinger M, Hagerman PJ, Hagerman RJ (2008) Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A 146A(8):1009–1016. https://doi.org/10.1002/ajmg.a.32060

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hall DA, O'Keefe JA (2012) Fragile x-associated tremor ataxia syndrome: the expanding clinical picture, pathophysiology, epidemiology, and update on treatment. Tremor Other Hyperkinet Mov (N Y) 2:tre-02-56-352-1. https://doi.org/10.7916/D8HD7TDS

    Article  Google Scholar 

  8. Kong HE, Zhao J, Xu S, Jin P, Jin Y (2017) Fragile X-associated tremor/ataxia syndrome: from molecular pathogenesis to development of therapeutics. Front Cell Neurosci 11:128. https://doi.org/10.3389/fncel.2017.00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen EG, Sullivan AK, Marcus M, Small C, Dominguez C, Epstein MP, Charen K, He W, Taylor KC, Sherman SL (2007) Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod 22(8):2142–2152. https://doi.org/10.1093/humrep/dem148

    Article  CAS  PubMed  Google Scholar 

  10. Streuli I, Fraisse T, Ibecheole V, Moix I, Morris MA, de Ziegler D (2009) Intermediate and premutation FMR1 alleles in women with occult primary ovarian insufficiency. Fertil Steril 92(2):464–470. https://doi.org/10.1016/j.fertnstert.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  11. Hubayter ZR, Tong ZB, Popat V, Hagerman PJ, Troendle J, Nelson LM (2009) Fragile X associated primary ovarian insufficiency (FXPOI): ovarian phenotype and <em>FMR1</em> RNA toxic gain of function in human granulosa cells. Fertil Steril 92(3):S6–S7. https://doi.org/10.1016/j.fertnstert.2009.07.025

    Article  Google Scholar 

  12. Sherman SL, Curnow EC, Easley CA, Jin P, Hukema RK, Tejada MI, Willemsen R, Usdin K (2014) Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord 6(1):26. https://doi.org/10.1186/1866-1955-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoffman GE, Le WW, Entezam A, Otsuka N, Tong ZB, Nelson L, Flaws JA, McDonald JH, Jafar S, Usdin K (2012) Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J Histochem Cytochem 60(6):439–456. https://doi.org/10.1369/0022155412441002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elizur SE, Lebovitz O, Derech-Haim S, Dratviman-Storobinsky O, Feldman B, Dor J, Orvieto R, Cohen Y (2014) Elevated levels of FMR1 mRNA in granulosa cells are associated with low ovarian reserve in FMR1 premutation carriers. PLoS One 9(8):e105121. https://doi.org/10.1371/journal.pone.0105121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, Brook JD (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11(7):805–814

    Article  CAS  Google Scholar 

  16. Sofola OA, Jin P, Qin Y, Duan R, Liu H, de Haro M, Nelson DL, Botas J (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55(4):565–571. https://doi.org/10.1016/j.neuron.2007.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108(1):260–265. https://doi.org/10.1073/pnas.1013343108

    Article  PubMed  Google Scholar 

  18. Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, Renoux AJ, Chen KC, Scaglione KM, Basrur V, Elenitoba-Johnson K, Vonsattel JP, Louis ED, Sutton MA, Taylor JP, Mills RE, Charlet-Berguerand N, Paulson HL (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78(3):440–455. https://doi.org/10.1016/j.neuron.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  19. Buijsen RA, Visser JA, Kramer P, Severijnen EA, Gearing M, Charlet-Berguerand N, Sherman SL, Berman RF, Willemsen R, Hukema RK (2016) Presence of inclusions positive for polyglycine containing protein, FMRpolyG, indicates that repeat-associated non-AUG translation plays a role in fragile X-associated primary ovarian insufficiency. Hum Reprod 31(1):158–168. https://doi.org/10.1093/humrep/dev280

    Article  CAS  PubMed  Google Scholar 

  20. Khalil AM, Faghihi MA, Modarresi F, Brothers SP, Wahlestedt C (2008) A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 3(1):e1486. https://doi.org/10.1371/journal.pone.0001486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pastori C, Peschansky VJ, Barbouth D, Mehta A, Silva JP, Wahlestedt C (2014) Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome. Hum Genet 133(1):59–67. https://doi.org/10.1007/s00439-013-1356-6

    Article  CAS  PubMed  Google Scholar 

  22. Pastori C, Wahlestedt C (2012) Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol 9(6):860–870. https://doi.org/10.4161/rna.20482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elizur SE, Dratviman-Storobinsky O, Derech-Haim S, Lebovitz O, Dor J, Orvieto R, Cohen Y (2016) FMR6 may play a role in the pathogenesis of fragile X-associated premature ovarian insufficiency. Gynecol Endocrinol 32(4):334–337. https://doi.org/10.3109/09513590.2015.1116508

    Article  CAS  PubMed  Google Scholar 

  24. Entezam A, Biacsi R, Orrison B, Saha T, Hoffman GE, Grabczyk E, Nussbaum RL, Usdin K (2007) Regional FMRP deficits and large repeat expansions into the full mutation range in a new Fragile X premutation mouse model. Gene 395(1–2):125–134. https://doi.org/10.1016/j.gene.2007.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu C, Lin L, Tan H, Wu H, Sherman SL, Gao F, Jin P, Chen D (2012) Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet 21(23):5039–5047. https://doi.org/10.1093/hmg/dds348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bontekoe CJ, Bakker CE, Nieuwenhuizen IM, van der Linde H, Lans H, de Lange D, Hirst MC, Oostra BA (2001) Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum Mol Genet 10(16):1693–1699

    Article  CAS  Google Scholar 

  27. Kang Y, Cheng MJ, Xu CJ (2011) Secretion of oestrogen from murine-induced pluripotent stem cells co-cultured with ovarian granulosa cells in vitro. Cell Biol Int 35(9):871–874. https://doi.org/10.1042/CBI20100737

    Article  CAS  PubMed  Google Scholar 

  28. Maman E, Yung Y, Cohen B, Konopnicki S, Dal Canto M, Fadini R, Kanety H, Kedem A, Dor J, Hourvitz A (2011) Expression and regulation of sFRP family members in human granulosa cells. Mol Hum Reprod 17(7):399–404. https://doi.org/10.1093/molehr/gar010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elizur, S.E., Friedman Gohas, M., Dratviman-Storobinsky, O., Cohen, Y. (2019). Pathophysiology Mechanisms in Fragile-X Primary Ovarian Insufficiency. In: Ben-Yosef, D., Mayshar, Y. (eds) Fragile-X Syndrome. Methods in Molecular Biology, vol 1942. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9080-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9080-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9079-5

  • Online ISBN: 978-1-4939-9080-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics