Skip to main content

Application of Drosophila Model Toward Understanding the Molecular Basis of Fragile X Syndrome

  • Protocol
  • First Online:
  • 1324 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1942))

Abstract

Drosophila melanogaster is an ideal model to study Fragile X syndrome (FXS) as it presents us with a toolbox to identify genetic modifiers and to investigate the molecular mechanisms of FXS. Here we describe some of the methods that have been used to study FXS, ranging from reverse genetic screening using the GAL4-UAS system, to mushroom body staining and courtship behavioral assays to examine the learning and memory deficits associated with FXS.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  Google Scholar 

  2. Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in drosophila. Nature 448:151–156

    Article  CAS  Google Scholar 

  3. Wan L, Dockendorff TC, Jongens TA et al (2000) Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 20:8536–8547

    Article  CAS  Google Scholar 

  4. Lee A, Li W, Xu K et al (2003) Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130:5543–5552

    Article  CAS  Google Scholar 

  5. Zhang YQ, Bailey AM, Matthies HJ et al (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107:591–603

    Article  CAS  Google Scholar 

  6. Tessier CR, Broadie K (2008) Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 135:1547–1557

    Article  CAS  Google Scholar 

  7. Morales J, Hiesinger PR, Schroeder AJ et al (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34:961–972

    Article  CAS  Google Scholar 

  8. Dockendorff TC, Su HS, McBride SMJ et al (2002) Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34:973–984

    Article  CAS  Google Scholar 

  9. Xu S, Poidevin M, Han E et al (2012) Circadian rhythm-dependent alterations of gene expression in drosophila brain lacking fragile X mental retardation protein. PLoS One 7:e37937

    Article  CAS  Google Scholar 

  10. Jin P, Zarnescu DC, Ceman S et al (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117

    Article  CAS  Google Scholar 

  11. Zhang W, Cheng Y, Li Y et al (2014) A feed-forward mechanism involving Drosophila fragile X mental retardation protein triggers a replication stress-induced DNA damage response. Hum Mol Genet 23:5188–5196

    Article  CAS  Google Scholar 

  12. Jenny A (2011) Preparation of adult drosophila eyes for thin sectioning and microscopic analysis. J Vis Exp 54:2959

    Google Scholar 

  13. Rubin L (1990) Rubin Lab Manual, 2nd edition. http://jfly.iam.utokyo.ac.jp/html/manuals/pdf/Rubin_Lab_Manual90.pdf

  14. Wolff T (2011) Preparation of drosophila eye specimens for scanning electron microscopy. Cold Spring Harb. Protoc. 2011, 11:1383–1385. https://doi.org/10.1101/pdb.prot066506

  15. Helfrich-Förster C (2007) Immunohistochemistry in Drosophila. In: Rosato E. (eds) Circadian Rhythms. Methods in Molecular Biology™, vol 362. Humana Press

    Google Scholar 

  16. Lim J, Fernandez AI, Hinojos SJ et al (2017) The mushroom body D1 dopamine receptor controls innate courtship drive. Genes Brain Behav 17(2):158–167

    Article  Google Scholar 

  17. Yamamoto D, Koganezawa M (2013) Genes and circuits of courtship behaviour in drosophila males. Nat Rev Neurosci 14:681–692

    Article  CAS  Google Scholar 

  18. (2011) Durcupan resin. Cold Spring Harb Protoc 2011:pdb.rec12381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, H.E., Lim, J., Jin, P. (2019). Application of Drosophila Model Toward Understanding the Molecular Basis of Fragile X Syndrome. In: Ben-Yosef, D., Mayshar, Y. (eds) Fragile-X Syndrome. Methods in Molecular Biology, vol 1942. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9080-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9080-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9079-5

  • Online ISBN: 978-1-4939-9080-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics