Skip to main content

Glutamate Receptor Antibodies in Autoimmune Central Nervous System Disease: Basic Mechanisms, Clinical Features, and Antibody Detection

  • Protocol
  • First Online:
Book cover Glutamate Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1941))

Abstract

Immune-mediated inflammation of the brain has been recognized for more than 50 years, although the initial descriptions were mainly thought to be secondary to an underlying neoplasm. Some of these paraneoplastic encephalitides express serum antibodies, but these were not thought to be pathogenic but instead have a T-cell-mediated pathophysiology. Over the last two decades, several pathogenic antibodies against neuronal surface antigens have been described in autoimmune encephalitis, which are amenable to immunotherapy. Several of these antibodies are directed against glutamate receptors (GluRs). NMDAR encephalitis (NMDARE) is the most common of these antibodies, and patients often present with psychosis, hallucinations, and reduced consciousness. Patients often progress on to develop confusion, seizures, movement disorders, autonomic instability, and respiratory depression. Although initially described as exclusively occurring secondary to ovarian teratoma (and later other tumors), non-paraneoplastic forms are increasingly common, and other triggers like viral infections are now well recognized. AMPAR encephalitis is relatively less common than NMDARE but is more likely to paraneoplastic. AMPAR antibodies typically cause limbic encephalitis, with patients presenting with confusion, disorientation, memory loss, and often seizures. The syndromes associated with the metabotropic receptor antibodies are much rarer and often can be paraneoplastic—mGluR1 (cerebellar degeneration) and mGluR5 (Ophelia syndrome) being the ones described in literature.

With the advance in molecular biology techniques, it is now possible to detect these antibodies using cell-based assays with high sensitivity and specificity, especially when coupled with brain tissue immunohistochemistry and binding to live cell-based neurons. The rapid and reliable identification of these antibodies aids in the timely treatment (either in the form of identifying/removing the underlying tumor or instituting immunomodulatory therapy) and has significantly improved clinical outcome in this otherwise devastating group of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Florey E (1954) An inhibitory and an excitatory factor of mammalian central nervous system, and their action of a single sensory neuron. Arch Int Physiol 62:33–53

    CAS  PubMed  Google Scholar 

  2. Kuffler SW (1954) Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J Neurophysiol 17:558–574

    Article  CAS  PubMed  Google Scholar 

  3. Nicoll RA, Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377(6545):115–118

    Article  CAS  PubMed  Google Scholar 

  4. Rousseaux CG (2008) A review of glutamate receptors I: current understanding of their biology. J Toxicol Pathol 21:25–51

    Article  CAS  Google Scholar 

  5. Karim AR, Jacob S (2012) Immunological markers in neurological disorders. Ann Clin Biochem 49:29–43

    Article  CAS  PubMed  Google Scholar 

  6. Levite M (2014) Glutamate receptor antibodies in neurological diseases. J Neural Transm 121:1029–1075

    Article  CAS  PubMed  Google Scholar 

  7. Rose CR, Felix L, Zeug A et al (2018) Astroglial glutamate signaling and uptake in the hippocampus. Front Mol Neurosci 17(10):451

    Article  CAS  Google Scholar 

  8. Krnjevir K, Phillis JW (1963) Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother 20:471–490

    Article  Google Scholar 

  9. Krnjevic K, Phillis JW (1963) Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol 165:274–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204

    Article  CAS  PubMed  Google Scholar 

  11. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28(3):197–276

    Article  CAS  PubMed  Google Scholar 

  12. Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41:143–210

    CAS  PubMed  Google Scholar 

  13. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  14. Chapman PF, Kairiss EW, Keenan CL et al (1990) Long-term synaptic potentiation in the amygdala. Synapse 6:271–278

    Article  CAS  PubMed  Google Scholar 

  15. Bruno V, Copani A, Battaglia G et al (1994) Protective effect of the metabotropic glutamate receptor agonist, DCG-IV, against excitotoxic neuronal death. Eur J Pharmacol 256(1):109–112

    Article  CAS  PubMed  Google Scholar 

  16. Monyer H, Sprengel R, Schoepfer R et al (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221

    Article  CAS  PubMed  Google Scholar 

  17. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  CAS  PubMed  Google Scholar 

  18. Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319–348

    Article  CAS  PubMed  Google Scholar 

  19. Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  20. Asztély F, Gustafsson B (1996) Ionotropic glutamate receptors. Their possible role in the expression of hippocampal synaptic plasticity. Mol Neurobiol 12:1–11

    Article  PubMed  Google Scholar 

  21. Miller S, Kesslak JP, Romano C et al (1995) Roles of metabotropic glutamate receptors in brain plasticity and pathology. Ann N Y Acad Sci 757:460–474

    Article  CAS  PubMed  Google Scholar 

  22. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian nervous system. Prog Neurobiol 54(5):581–618

    Article  CAS  PubMed  Google Scholar 

  23. Cunningham MD, Ferkany JW, Enna SJ (1994) Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci 54(3):135–148

    Article  CAS  PubMed  Google Scholar 

  24. Shannon HE, Sawyer BD (1989) Glutamate receptors of the N-methyl-D-aspartate subtype in the myenteric plexus of the guinea pig ileum. J Pharmacol Exp Ther 251:518–523

    CAS  PubMed  Google Scholar 

  25. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  26. Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug Targets 7:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mayer ML (2011) Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Curr Opin Neurobiol 21(2):283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer ML (2011) Emerging models of glutamate receptor ion channel structure and function. Structure 19(10):1370–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sobolevsky AI (2015) Structure and gating of tetrameric glutamate receptors. J Physiol 5931:29–38

    Article  CAS  Google Scholar 

  30. Lynch DR, Rattelle A, Dong YN et al (2018) Anti-NMDA receptor encephalitis: clinical features and basic mechanisms. Adv Pharmacol 82:235–260

    Article  PubMed  Google Scholar 

  31. Regan MC, Romero-Hernandez A, Furukawa H (2015) A structural biology perspective on NMDA receptor pharmacology and function. Curr Opin Struct Biol 33:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Traynelis SF, Wollmuth LP, Mcbain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol 20:14–23

    Article  CAS  PubMed  Google Scholar 

  34. Monyer H, Sprengel R, Schoepfer R et al (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  CAS  PubMed  Google Scholar 

  35. Karakas E, Simorowski N, Furukawa H (2009) Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28:3910–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dalmau J, Geis C, Graus F (2017) Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 97:839–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gleichman AJ, Spruce LA, Dalmau J et al (2012) Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J Neurosci 32:11082–11094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herron CE, Lester RA, Coan EJCG (1986) Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature 322(6076):265–268

    Article  CAS  PubMed  Google Scholar 

  39. Kupper J, Ascher P, Neytont J (1996) Probing the pore region of recombinant N-methyl-D-aspartate channels using external and internal magnesium block. Proc Natl Acad Sci U S A 93(16):8648–8653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Forrest D, Yuzaki M, Soares HD et al (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13:325–338

    Article  CAS  PubMed  Google Scholar 

  41. Partin KM, Fleck MW, Mayer ML (1996) AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by Cyclothiazide, Aniracetam, and Thiocyanate. J Neurosci 16(21):6634–6647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parsons CG, Zong X, Lux HD (1993) Whole cell and single channel analysis of the kinetics of glycine-sensitive N-methyl-D-aspartate receptor desensitization. Br J Pharmacol 109(1):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chávez AE, Singer JH, Diamond JS (2006) Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443(7112):705–708

    Article  PubMed  CAS  Google Scholar 

  44. Sommer B, Keinänen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585

    Article  CAS  PubMed  Google Scholar 

  45. Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  CAS  PubMed  Google Scholar 

  46. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599

    Article  CAS  PubMed  Google Scholar 

  47. Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15:282–288

    Article  CAS  PubMed  Google Scholar 

  48. Palmer CL, Cotton L, Henley JM (2005) The molecular pharmacology and cell biology of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 57(2):253–277

    Article  CAS  PubMed  Google Scholar 

  49. Geiger JR, Melcher T, Koh DS et al (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15(1):193–204

    Article  CAS  PubMed  Google Scholar 

  50. Sans N, Vissel B, Petralia RS et al (2003) Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J Neurosci 23(28):9367–9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wenthold RJ, Petralia RS, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16(6):1982–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sprengel R (2006) Role of AMPA receptors in synaptic plasticity. Cell Tissue Res 326(2):447–455

    Article  CAS  PubMed  Google Scholar 

  53. Vignes M, Bleakman D, Lodge D et al (1997) The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology 36:1477–1481

    Article  CAS  PubMed  Google Scholar 

  54. Lerma J, Paternain AV, Rodriguez A et al (2001) Molecular physiology of Kainate receptors. Physiol Rev 81(3):971–998

    Article  CAS  PubMed  Google Scholar 

  55. Collingridge GL, Olsen RW, Peters J et al (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56(1):2–5

    Article  CAS  PubMed  Google Scholar 

  56. Keinänen K, Wisden W, Sommer B et al (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560

    Article  PubMed  Google Scholar 

  57. Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 6:89–97

    Article  CAS  PubMed  Google Scholar 

  58. Chittajallu R, Braithwaite SP, Clarke VR et al (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35

    Article  CAS  PubMed  Google Scholar 

  59. Ohashi H, Maruyama T, Higashi-Matsumoto H et al (2002) A novel binding assay for metabotropic glutamate receptors using [3H] L-quisqualic acid and recombinant receptors. Z Naturforsch C 57:348–355

    Article  CAS  PubMed  Google Scholar 

  60. Hinoi E, Ogita K, Takeuchi Y et al (2001) Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochem Int 38:277–285

    Article  CAS  PubMed  Google Scholar 

  61. Chu Z, Hablitz JJ (2000) Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res 879:88–92

    Article  CAS  PubMed  Google Scholar 

  62. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schoepp DD (1994) Novel functions for subtypes of metabotropic glutamate receptors. Neurochem Int 24:439–449

    Article  CAS  PubMed  Google Scholar 

  64. Narahashi T, Arakawa O, Brunner EA et al (1992) Modulation of GABA receptor-channel complex by alcohols and general anesthetics. Adv Biochem Psychopharmacol 47:325–334

    CAS  PubMed  Google Scholar 

  65. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  CAS  PubMed  Google Scholar 

  66. Kew JNC, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29

    Article  CAS  PubMed  Google Scholar 

  67. Crisp SJ, Kullmann DM, Vincent A (2016) Autoimmune synaptopathies. Nat Rev Neurosci 17:103–117

    Article  CAS  PubMed  Google Scholar 

  68. Darnell RB, Posner JB (2003) Paraneoplastic syndromes involving the nervous system. N Engl J Med 349(16):1543–1554

    Article  CAS  PubMed  Google Scholar 

  69. Drachman DB, Angus CW, Adams RN et al (1978) Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 298:1116–1122

    Article  CAS  PubMed  Google Scholar 

  70. Drachman DB, Adams RN, Josifek LF et al (1982) Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med 307:769–775

    Article  CAS  PubMed  Google Scholar 

  71. Nagel A, Engel AG, Lang B et al (1988) Lambert-Eaton myasthenic syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann Neurol 24:552–558

    Article  CAS  PubMed  Google Scholar 

  72. Waterman SA, Lang B, Newsom-Davis J (1997) Effect of Lambert-Eaton myasthenic syndrome antibodies on autonomic neurons in the mouse. Ann Neurol 42:147–156

    Article  CAS  PubMed  Google Scholar 

  73. Casper J (1928) Subacute cortical cerebellar degeneration associated with carcinoma. Zbl ges Neurol Psychiat 53:854

    Google Scholar 

  74. Brain WR, Daniel PM, Greenfield JG (1951) Subacute cortical cerebellar degeneration and its relation to carcinoma. J Neurol Neurosurg Psychiatry 14(2):59–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Corsellis JA, Goldberg GJ, Norton AR (1968) “Limbic encephalitis” and its association with carcinoma. Brain 91(3):481–496

    Article  CAS  PubMed  Google Scholar 

  76. Graus F, Cordon-Cardo C, Posner JB (1985) Neuronal antinuclear antibody in sensory neuronopathy from lung cancer. Neurology 35:538–543

    Article  CAS  PubMed  Google Scholar 

  77. Dalmau J, Rosenfeld MR (2008) Paraneoplastic syndromes of the CNS. Lancet Neurol 7(4):327–340

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moscato EH, Jain A, Peng X et al (2010) Mechanisms underlying autoimmune synaptic encephalitis leading to disorders of memory, behavior and cognition: insights from molecular, cellular and synaptic studies. Eur J Neurosci 32(2):298–309

    Article  PubMed  PubMed Central  Google Scholar 

  79. Buckley C, Oger J, Clover L et al (2001) Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 50:73–78

    Article  CAS  PubMed  Google Scholar 

  80. Vincent A, Buckley C, Schott JM et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127:701–712

    Article  PubMed  Google Scholar 

  81. Irani SR, Alexander S, Waters P et al (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133(9):2734–2748

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vitaliani R, Mason W, Ances B et al (2005) Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 58(4):594–604

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ances BM, Vitaliani R, Taylor RA et al (2005) Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 128:1764–1777

    Article  PubMed  Google Scholar 

  84. Gable MS, Gavali S, Radner A et al (2009) Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis 28:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dalmau J, Tüzün E, Wu H et al (2007) Paraneoplastic anti- N -methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 61:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lai M, Hughes EG, Peng X et al (2009) AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 65:424–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Höftberger R, Titulaer MJ, Sabater L et al (2013) Encephalitis and GABA B receptor antibodies novel findings in a new case series of 20 patients. Neurology 81(17):1500–1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jeffery OJ, Lennon VA, Pittock SJ et al (2013) GABAB receptor autoantibody frequency in service serologic evaluation. Neurology 81:882–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lancaster E, Lai M, Peng X et al (2010) Antibodies to the GABA B receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 9(1):67–76

    Article  CAS  PubMed  Google Scholar 

  90. Petit-Pedrol M, Armangue T, Peng X et al (2014) Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABA A receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 13(3):276–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carvajal-Gonzá Lez A, Leite MI, Waters P et al (2014) Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 137:2178–2192

    Article  Google Scholar 

  92. Martinez-Hernandez E, Ariño H, McKeon A et al (2016) Clinical and immunologic investigations in patients with stiff-person spectrum disorder. JAMA Neurol 73:714–720

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lancaster E, Martinez-Hernandez E, Titulaer MJ et al (2011) Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 77(18):1698–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sabater L, Gaig C, Gelpi E et al (2014) A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 13:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gelpi E, Höftberger R, Graus F et al (2016) Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 132:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Marignier R, Chenevier F, Rogemond V et al (2010) Metabotropic glutamate receptor type 1 autoantibody-associated cerebellitis: a primary autoimmune disease? Arch Neurol 67:627–630

    Article  PubMed  Google Scholar 

  97. Smitt PS, Kinoshita A, De Leeuw B et al (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342:21–27

    Article  Google Scholar 

  98. Dale RC, Merheb V, Pillai S et al (2012) Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 135:3453–3468

    Article  PubMed  Google Scholar 

  99. Boronat A, Gelfand JM, Gresa-Arribas N et al (2013) Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 73:120–128

    Article  CAS  PubMed  Google Scholar 

  100. Cheng MH, Fan U, Grewal N et al (2010) Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. N Engl J Med 362:764–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meager A, Peterson P, Willcox N (2008) Hypothetical review: thymic aberrations and type-I interferons; attempts to deduce autoimmunizing mechanisms from unexpected clues in monogenic and paraneoplastic syndromes. Clin Exp Immunol 154:141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shelly S, Agmon-Levin N, Altman A et al (2011) Thymoma and autoimmunity. Cell Mol Immunol 8:199–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Leypoldt F, Wandinger KP, Bien CG et al (2013) Autoimmune encephalitis. Eur Neurol Rev 8(1):31–37

    Article  PubMed  PubMed Central  Google Scholar 

  104. Martinez-Hernandez E, Horvath J, Shiloh-Malawsky Y et al (2011) Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 77(6):589–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Binks S, Varley J, Lee W et al (2018) Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain. https://doi.org/10.1093/brain/awy109

    Article  PubMed Central  PubMed  Google Scholar 

  106. Jones HF, Mohammad SS, Reed PW et al (2017) Anti- N -methyl- d -aspartate receptor encephalitis in Māori and Pacific Island children in New Zealand. Dev Med Child Neurol 59:719–724

    Article  PubMed  Google Scholar 

  107. Mueller SH, Färber A, Prüss H et al (2018) Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol 83:863–869

    Article  CAS  PubMed  Google Scholar 

  108. Graus F, Delattre JY, Antoine JC et al (2004) Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 75:1135–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tüzün E, Zhou L, Baehring JM et al (2009) Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 118:737–743

    Article  PubMed  PubMed Central  Google Scholar 

  110. Makuch M, Wilson R, Al-Diwani A et al (2018) N-methyl-D-aspartate receptor antibody production from germinal center reactions: therapeutic implications. Ann Neurol 83:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dalmau J, Gleichman AJ, Hughes EG et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7:1091–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Armangue T, Leypoldt F, Málaga I et al (2014) Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 75:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Armangue T, Titulaer MJ, Málaga I et al (2013) Pediatric anti-N-methyl-D-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. J Pediatr 162:850–856.e2

    Article  CAS  PubMed  Google Scholar 

  114. Prüss H, Finke C, Höltje M et al (2012) N-methyl- D -aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol 72:902–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Schabitz W-R, Rogalewski A, Hagemeister C et al (2014) VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology 83:2309–2311

    Article  PubMed  Google Scholar 

  116. Gable MS, Gavali S, Radner A et al (2009) Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis 28:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Salovin A, Glanzman J, Roslin K et al (2018) Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection. Neurol Neuroimmunol neuroinflamm 5:e458

    Article  PubMed  PubMed Central  Google Scholar 

  118. Dalmau J (2016) NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias lecture. Neurology 87(23):2471–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Titulaer MJ, McCracken L, Gabilondo I et al (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Granerod J, Ambrose HE, Davies NW et al (2010) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10:835–844

    Article  PubMed  Google Scholar 

  121. Gresa-Arribas N, Titulaer MJ, Torrents A et al (2014) Diagnosis and significance of antibody titers in anti-NMDA receptor encephalitis, a retrospective study. Lancet Neurol 13(2):167–177

    Article  CAS  PubMed  Google Scholar 

  122. Kreye J, Wenke NK, Chayka M et al (2016) Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 139:2641–2652

    Article  PubMed  Google Scholar 

  123. Gable MS, Sheriff H, Dalmau J et al (2012) The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California encephalitis project. Clin Infect Dis 54(7):899–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dalmau J, Lancaster E, Martinez-Hernandez E et al (2011) Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Titulaer MJ, McCracken L, Gabilondo I et al (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zandi MS, Irani SR, Lang B et al (2011) Disease-relevant autoantibodies in first episode schizophrenia. J Neurol 258:686–688

    Article  PubMed  Google Scholar 

  127. Kleinig TJ, Thompson PD, Matar W et al (2008) The distinctive movement disorder of ovarian teratoma-associated encephalitis. Mov Disord 23:1256–1261

    Article  PubMed  Google Scholar 

  128. Gresa-Arribas N, Titulaer MJ, Torrents A et al (2014) Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 13:167–177

    Article  CAS  PubMed  Google Scholar 

  129. Hill KE, Clawson SA, Rose JW et al (2009) Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J Neuroinflammation 6:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hacohen Y, Zuberi S, Vincent A et al (2015) Neuromyelitis optica in a child with Aicardi-Goutières syndrome. Neurology 85(4):381–383

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schmitt SE, Pargeon K, Frechette ES et al (2012) Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 79(11):1094–1100

    Article  PubMed  PubMed Central  Google Scholar 

  132. Abbas A, Garg A, Jain R et al (2016) Extreme delta brushes and BIRDs in the EEG of anti-NMDA-receptor encephalitis. Pract Neurol 16(4):326–327

    Article  PubMed  Google Scholar 

  133. Baykan B, Gungor Tuncer O, Vanli-Yavuz EN et al (2018) Delta brush pattern is not unique to NMDAR encephalitis: evaluation of two independent long-term EEG cohorts. Clin EEG Neurosci 49:278–284

    Article  PubMed  Google Scholar 

  134. Leypoldt F, Buchert R, Kleiter I et al (2012) Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 83:681–686

    Article  PubMed  Google Scholar 

  135. Steiner J, Walter M, Glanz W et al (2013) Increased prevalence of diverse N -methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia. JAMA Psychiat 70:271

    Article  Google Scholar 

  136. Busse S, Busse M, Brix B et al (2014) Seroprevalence of N-methyl-D-aspartate glutamate receptor (NMDA-R) autoantibodies in aging subjects without neuropsychiatric disorders and in dementia patients. Eur Arch Psychiatry Clin Neurosci 264:545–550

    Article  PubMed  Google Scholar 

  137. Zerche M, Weissenborn K, Ott C et al (2015) Preexisting serum autoantibodies against the NMDAR subunit NR1 modulate evolution of lesion size in acute ischemic stroke. Stroke 46:1180–1186

    Article  CAS  PubMed  Google Scholar 

  138. Doss S, Wandinger K-P, Hyman BT et al (2014) High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 1:822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dahm L, Ott C, Steiner J et al (2014) Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 76:82–94

    Article  CAS  PubMed  Google Scholar 

  140. Gastaldi M, Thouin A, Franciotta D et al (2017) Pitfalls in the detection of N -methyl- d -aspartate-receptor (NMDA-R) antibodies. Clin Biochem 50:354–355

    Article  CAS  PubMed  Google Scholar 

  141. Zandi MS, Paterson RW, Ellul MA et al (2015) Clinical relevance of serum antibodies to extracellular N -methyl-d-aspartate receptor epitopes. J Neurol Neurosurg Psychiatry 86:708–713

    Article  PubMed  Google Scholar 

  142. Hara M, Martinez-Hernandez E, Ariño H et al (2018) Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 90(16):e1386–e1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hansen H-C, Klingbeil C, Dalmau J et al (2013) Persistent intrathecal antibody synthesis 15 years after recovering from anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 70:117–119

    Article  PubMed  PubMed Central  Google Scholar 

  144. Viaccoz A, Desestret V, Ducray F et al (2014) Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 82:556–563

    Article  CAS  PubMed  Google Scholar 

  145. Lapteva L, Nowak M, Yarboro CH et al (2006) Anti–N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum 54:2505–2514

    Article  CAS  PubMed  Google Scholar 

  146. Fragoso-Loyo H, Cabiedes J, Orozco-Narváez A et al (2008) Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS One 3:e3347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Harrison MJ, Ravdin LD, Lockshin MD (2006) Relationship between serum NR2a antibodies and cognitive dysfunction in systemic lupus erythematosus. Arthritis Rheum 54:2515–2522

    Article  CAS  PubMed  Google Scholar 

  148. Steup-Beekman G, Steens S, van Buchem M et al (2007) Anti-NMDA receptor autoantibodies in patients with systemic lupus erythematosus and their first-degree relatives. Lupus 16:329–334

    Article  CAS  PubMed  Google Scholar 

  149. Graus F, Dalmau J (2014) Neuronal antibodies in Creutzfeldt-Jakob disease—reply. JAMA Neurol 71:514–515

    Article  PubMed  Google Scholar 

  150. De Bruijn MA, Titulaer MJ (2016) Anti-NMDAR encephalitis and other glutamate and GABA receptor antibody encephalopathies. Handb Clin Neurol 133:199–217

    Article  PubMed  Google Scholar 

  151. Höftberger R, van Sonderen A, Leypoldt F et al (2015) Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 84:2403–2412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Peng X, Hughes EG, Moscato EH et al (2015) Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol 77:381–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rogers SW, Andrews PI, Gahring LC et al (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265:648–651

    Article  CAS  PubMed  Google Scholar 

  154. Mat A, Adler H, Merwick A et al (2013) Ophelia syndrome with metabotropic glutamate receptor 5 antibodies in CSF. Neurology 80:1349–1350

    Article  PubMed  PubMed Central  Google Scholar 

  155. Spatola M, Sabater L, Planaguma J et al (2018) Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 90:e1964–e1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Carr I (1982) The Ophelia syndrome: memory loss in Hodgkin’s disease. Lancet 319:844–845

    Article  Google Scholar 

  157. Graus F, Rosenfeld MR, Saiz A et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15:391–404

    Article  PubMed  PubMed Central  Google Scholar 

  158. Irani SR, Bera K, Waters P et al (2010) N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 133:1655–1667

    Article  PubMed  PubMed Central  Google Scholar 

  159. McCracken L, Zhang J, Greene M et al (2017) Improving the antibody-based evaluation of autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 4(6):e404

    Article  PubMed  PubMed Central  Google Scholar 

  160. Graus F, Saiz A, Dalmau J (2010) Antibodies and neuronal autoimmune disorders of the CNS. J Neurol 257:509–517

    Article  CAS  PubMed  Google Scholar 

  161. Karim A, Egner W, Patel D et al (2016) International consensus: paraneoplastic neurological antibodies—are we there yet? J Clin Exp Neuroimmunol 1(1). https://www.omicsonline.org/open-access/international-consensus-paraneoplastic-neurological-antibodies%2D%2Dare-we-thereyet-jceni-1000105.pdf

  162. Lancaster E, Dalmau J (2012) Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 8(7):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wandinger K-P, Klingbeil C, Gneiss C et al (2011) Neue serologische Marker zur Differentialdiagnose der Autoimmun-Enzephalitis/New serological markers for the differential diagnosis of autoimmune limbic encephalitis. J Lab Med 35:329–342

    CAS  Google Scholar 

  164. Qin W, Beck LH, Zeng C et al (2011) Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol 22:1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Leypoldt F, Wandinger KP (2014) Paraneoplastic neurological syndromes. Clin Exp Immunol 175:336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. McKeon A, Pittock SJ, Lennon VA (2011) CSF complements serum for evaluations paraneoplastic antibodies and NMO-IgG. Neurology 76(12):1108–1110

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hachiya Y, Uruha A, Kasai-Yoshida E et al (2013) Rituximab ameliorates anti-N-methyl-D-aspartate receptor encephalitis by removal of short-lived plasmablasts. J Neuroimmunol 265:128–130

    Article  CAS  PubMed  Google Scholar 

  168. Jeong IH, Park B, Kim S-H et al (2016) Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints. Mult Scler 22:329–339

    Article  CAS  PubMed  Google Scholar 

  169. Mealy MA, Wingerchuk DM, Palace J et al (2014) Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol 71:324–330

    Article  PubMed  Google Scholar 

  170. Tanyi JL, Marsh EB, Dalmau J et al (2012) Reversible paraneoplastic encephalitis in three patients with ovarian neoplasms. Acta Obstet Gynecol Scand 91:630–634

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiju Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scotton, W.J., Karim, A., Jacob, S. (2019). Glutamate Receptor Antibodies in Autoimmune Central Nervous System Disease: Basic Mechanisms, Clinical Features, and Antibody Detection. In: Burger, C., Velardo, M. (eds) Glutamate Receptors. Methods in Molecular Biology, vol 1941. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9077-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9077-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9076-4

  • Online ISBN: 978-1-4939-9077-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics