Skip to main content

Single-Molecule FRET Methods to Study Glutamate Receptors

  • Protocol
  • First Online:
Glutamate Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1941))

Abstract

Single-molecule fluorescence energy transfer methods allow us to determine the complete structural landscape between the donor and acceptor fluorophores introduced on the protein of interest. This method is particularly attractive to study ion channel proteins as single-molecule current recordings have been used to study the function of these proteins for several decades. Here we describe the smFRET method used to study glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sirrieh RE, MacLean DM, Jayaraman V (2015) A conserved structural mechanism of NMDA receptor inhibition: a comparison of ifenprodil and zinc. J Gen Physiol 146(2):173–181

    Article  CAS  Google Scholar 

  2. MacLean DM, Ramaswamy SS, Du M, Howe JR, Jayaraman V (2014) Stargazin promotes closure of the AMPA receptor ligand-binding domain. J Gen Physiol 144(6):503–512

    Article  CAS  Google Scholar 

  3. Ramaswamy S, Cooper D, Poddar N et al (2012) Role of conformational dynamics in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor partial agonism. J Biol Chem 287(52):43557–43564

    Article  CAS  Google Scholar 

  4. Shaikh SA, Dolino DM, Lee G et al (2016) Stargazin modulation of AMPA receptors. Cell Rep 17(2):328–335

    Article  CAS  Google Scholar 

  5. Dolino DM, Chatterjee S, MacLean DM et al (2017) The structure-energy landscape of NMDA receptor gating. Nat Chem Biol 13:1232–1238

    Article  CAS  Google Scholar 

  6. Baker KA, Lamichhane R, Lamichhane T, Rueda D, Cunningham PR (2016) Protein–RNA dynamics in the central junction control 30S ribosome assembly. J Mol Biol 428(18):3615–3631

    Article  CAS  Google Scholar 

  7. Bal M, Zaika O, Martin P, Shapiro MS (2008) Calmodulin binding to M-type K+ channels assayed by TIRF/FRET in living cells. J Physiol 586(9):2307–2320

    Article  CAS  Google Scholar 

  8. Dolino DM, Rezaei Adariani S, Shaikh SA, Jayaraman V, Sanabria H (2016) Conformational selection and submillisecond dynamics of the ligand-binding domain of the N-Methyl-d-aspartate receptor. J Biol Chem 291(31):16175–16185

    Article  CAS  Google Scholar 

  9. Gomes G-N, Gradinaru CC (2017) Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence. Biochim Biophys Acta Proteins Proteom 1865(11 Pt B):1696–1706

    Article  CAS  Google Scholar 

  10. Gouridis G, Schuurman-Wolters GK, Ploetz E et al (2015) Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat Struct Mol Biol 22(1):57–64

    Article  CAS  Google Scholar 

  11. Kempe D, Cerminara M, Poblete S, Schöne A, Gabba M, Fitter J (2017) Single-molecule FRET measurements in additive-enriched aqueous solutions. Anal Chem 89(1):694–702

    Article  CAS  Google Scholar 

  12. Kim J-Y, Kim C, Lee NK (2015) Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nat Commun 6:6992

    Article  CAS  Google Scholar 

  13. Martinac B (2017) Single-molecule FRET studies of ion channels. Prog Biophys Mol Biol 130(Pt B):192–197

    Article  CAS  Google Scholar 

  14. McLoughlin SY, Kastantin M (2013) Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proc Natl Acad Sci U S A 110(48):19396–19401

    Article  CAS  Google Scholar 

  15. Song C-X, Diao J, Brunger AT, Quake SR (2016) Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation. Proc Natl Acad Sci U S A 113(16):4338–4343

    Article  CAS  Google Scholar 

  16. Stockmar F, Kobitski AY, Nienhaus GU (2016) Fast folding dynamics of an intermediate state in RNase H measured by single-molecule FRET. J Phys Chem B 120(4):641–649

    Article  CAS  Google Scholar 

  17. Wang S, Vafabakhsh R, Borschel WF, Ha T, Nichols CG (2016) Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Nat Struct Mol Biol 23(1):31–36

    Article  CAS  Google Scholar 

  18. Wang Y, Liu Y, DeBerg HA et al (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. elife 3:e01834

    Article  Google Scholar 

  19. Warhaut S, Mertinkus KR, Höllthaler P et al (2017) Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res 45(9):5512–5522

    Article  CAS  Google Scholar 

  20. Landes CF, Rambhadran A, Taylor JN, Salatan F, Jayaraman V (2011) Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nat Chem Biol 7(3):168–173

    Article  CAS  Google Scholar 

  21. Cooper DR, Dolino DM, Jaurich H et al (2015) Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET. Biophys J 109(1):66–75

    Article  CAS  Google Scholar 

  22. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  CAS  Google Scholar 

  23. Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–513

    Article  CAS  Google Scholar 

  24. Lü W, Du J, Goehring A, Gouaux E (2017) Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355(6331):eaal3729

    Article  Google Scholar 

  25. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI (2017) Structural bases of desensitization in AMPA receptor-auxiliary subunit complexes. Neuron 94(3):569–580

    Article  CAS  Google Scholar 

  26. Ye S, Köhrer C, Huber T et al (2008) Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J Biol Chem 283(3):1525–1533

    Article  CAS  Google Scholar 

  27. Dolino DM, Cooper D, Ramaswamy S, Jaurich H, Landes CF, Jayaraman V (2015) Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor. J Biol Chem 290(2):797–804

    Article  CAS  Google Scholar 

  28. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91(5):1941–1951

    Article  CAS  Google Scholar 

  29. Shuang B, Cooper D, Taylor JN et al (2014) Fast step transition and state identification (STaSI) for discrete single-molecule data analysis. J Phys Chem Lett 5(18):3157–3161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by NIH grants R35GM122528 (VJ) and F31GM130035 (RJD) and by the Houston Area Molecular Biophysics Training Program NIH- 2T32 GM008280-26 (DBL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanthi Jayaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Litwin, D.B., Durham, R.J., Jayaraman, V. (2019). Single-Molecule FRET Methods to Study Glutamate Receptors. In: Burger, C., Velardo, M. (eds) Glutamate Receptors. Methods in Molecular Biology, vol 1941. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9077-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9077-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9076-4

  • Online ISBN: 978-1-4939-9077-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics