Skip to main content

Teasing of Ventral Spinal Cord White Matter Fibers for the Analysis of Central Nervous System Nodes of Ranvier

  • Protocol
  • First Online:
Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

In the central nervous system, the formation of nodes of Ranvier, the short, unmyelinated regions of the axon where voltage-gated sodium channels that mediate saltatory conduction in myelinated nerves are concentrated, is orchestrated by oligodendrocytes, the myelinating cells of the CNS. While transmission electron microscopy remains the gold standard for the study of how the nodal region is organized, this approach is both technically demanding and time-consuming. The availability of antibodies that can be used to label paranodal myelin and the underlying axonal domains that are formed as a result of myelination allows for the precise analysis of the nodal region. In this chapter, we describe the method used to prepare teased fiber preparations of CNS white matter. Teased fiber preparations facilitate the rapid, quantitative analysis of a large number of nodes of Ranvier per animal compared to conventional histological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4(12):968–980

    Article  CAS  Google Scholar 

  2. Buttermore ED, Thaxton CL, Bhat MA (2013) Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res 91(5):603–622. https://doi.org/10.1002/jnr.23197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salzer JL (2003) Polarized domains of myelinated axons. Neuron 40(2):297–318

    Article  CAS  Google Scholar 

  4. Susuki K, Otani Y, Rasband MN (2016) Submembranous cytoskeletons stabilize nodes of Ranvier. Exp Neurol 283(Pt B):446–451. https://doi.org/10.1016/j.expneurol.2015.11.012

    Article  PubMed  Google Scholar 

  5. Coman I, Aigrot MS, Seilhean D, Reynolds R, Girault JA, Zalc B, Lubetzki C (2006) Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129(Pt 12):3186–3195

    Article  CAS  Google Scholar 

  6. Howell OW, Palser A, Polito A, Melrose S, Zonta B, Scheiermann C, Vora AJ, Brophy PJ, Reynolds R (2006) Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129(Pt 12):3173–3185

    Article  CAS  Google Scholar 

  7. Hinman JD, Peters A, Cabral H, Rosene DL, Hollander W, Rasband MN, Abraham CR (2006) Age-related molecular reorganization at the node of Ranvier. J Comp Neurol 495(4):351–362. https://doi.org/10.1002/cne.20886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Volman V, Ng LJ (2014) Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci 37(3):439–457. https://doi.org/10.1007/s10827-014-0515-7

    Article  PubMed  Google Scholar 

  9. Ouyang H, Sun W, Fu Y, Li J, Cheng JX, Nauman E, Shi R (2010) Compression induces acute demyelination and potassium channel exposure in spinal cord. J Neurotrauma 27(6):1109–1120. https://doi.org/10.1089/neu.2010.1271

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun W, Fu Y, Shi Y, Cheng JX, Cao P, Shi R (2012) Paranodal myelin damage after acute stretch in Guinea pig spinal cord. J Neurotrauma 29(3):611–619. https://doi.org/10.1089/neu.2011.2086

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ritter J, Schmitz T, Chew LJ, Buhrer C, Mobius W, Zonouzi M, Gallo V (2013) Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 33(21):8990–9002. https://doi.org/10.1523/JNEUROSCI.5528-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reimer MM, McQueen J, Searcy L, Scullion G, Zonta B, Desmazieres A, Holland PR, Smith J, Gliddon C, Wood ER, Herzyk P, Brophy PJ, McCulloch J, Horsburgh K (2011) Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J Neurosci 31(49):18185–18194. https://doi.org/10.1523/JNEUROSCI.4936-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi BR, Kim DH, Back DB, Kang CH, Moon WJ, Han JS, Choi DH, Kwon KJ, Shin CY, Kim BR, Lee J, Han SH, Kim HY (2016) Characterization of white matter injury in a rat model of chronic cerebral hypoperfusion. Stroke 47(2):542–547. https://doi.org/10.1161/STROKEAHA.115.011679

    Article  PubMed  Google Scholar 

  14. Hinman JD, Lee MD, Tung S, Vinters HV, Carmichael ST (2015) Molecular disorganization of axons adjacent to human lacunar infarcts. Brain 138(Pt 3):736–745. https://doi.org/10.1093/brain/awu398

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tagoe T, Barker M, Jones A, Allcock N, Hamann M (2014) Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J Neurosci 34(7):2684–2688. https://doi.org/10.1523/JNEUROSCI.3977-13.2014

    Article  CAS  PubMed  Google Scholar 

  16. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073. https://doi.org/10.1038/ncomms9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C, Verkleij D, Goebbels S, Edgar J, Merkler D, Lyons DA, Nave KA, Simons M (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156(1–2):277–290. https://doi.org/10.1016/j.cell.2013.11.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramón y Cajal S (1909) Histologie du système nerveux de l'homme et des vertébrés. Consejo Superior de Investigaciones Cientificas, Madrid.

    Google Scholar 

  19. Rosenbluth J (1999) A brief history of myelinated nerve fibers: one hundred and fifty years of controversy. J Neurocytol 28(4–5):251–262

    Article  CAS  Google Scholar 

  20. McDonald WI, Ohlrich GD (1971) Quantitative anatomical measurements on single isolated fibres from the cat spinal cord. J Anat 110(Pt 2):191–202

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gledhill RF, McDonald WI (1977) Morphological characteristics of central demyelination and remyelination: a single-fiber study. Ann Neurol 1(6):552–560. https://doi.org/10.1002/ana.410010607

    Article  CAS  PubMed  Google Scholar 

  22. Allt G, Gajree T (1975) Teased single C.N.S. fibres observed by light and electron microscopy. J Neurocytol 4(6):647–651

    Article  CAS  Google Scholar 

  23. Court FA, Sherman DL, Pratt T, Garry EM, Ribchester RR, Cottrell DF, Fleetwood-Walker SM, Brophy PJ (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431(7005):191–195. https://doi.org/10.1038/nature02841

    Article  CAS  PubMed  Google Scholar 

  24. Zonta B, Tait S, Melrose S, Anderson H, Harroch S, Higginson J, Sherman DL, Brophy PJ (2008) Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J Cell Biol 181:1169–1177

    Article  CAS  Google Scholar 

  25. Jarjour AA, Boyd A, Dow LE, Holloway RK, Goebbels S, Humbert PO, Williams A, ffrench-Constant C (2015) The polarity protein Scribble regulates myelination and remyelination in the central nervous system. PLoS Biol 13(3):e1002107. https://doi.org/10.1371/journal.pbio.1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Este E, Kamin D, Balzarotti F, Hell SW (2017) Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc Natl Acad Sci U S A 114(2):E191–E199. https://doi.org/10.1073/pnas.1619553114

    Article  CAS  PubMed  Google Scholar 

  27. Munzel EJ, Becker CG, Becker T, Williams A (2014) Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age. Acta Neuropathol Commun 2:77. https://doi.org/10.1186/s40478-014-0077-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.A.J. thanks the Wellcome Trust, Medical Research Council and UK Multiple Sclerosis Society for support (grants to Charles ffrench-Constant). D.L.S. thanks the Wellcome Trust (grant to Peter Brophy) and Medical Research council for support (grant to Peter Brophy and DLS). Many thanks to Peter Brophy and Charles ffrench-Constant for their helpful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Jarjour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jarjour, A.A., Sherman, D.L. (2019). Teasing of Ventral Spinal Cord White Matter Fibers for the Analysis of Central Nervous System Nodes of Ranvier. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics