Skip to main content

Magnetic Resonance Techniques for Imaging White Matter

  • Protocol
  • First Online:
Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

The white matter is a complex network of brain fibers connecting different information processing regions in the brain. In recent years, the investigation of white matter in humans and in animal models has greatly benefitted from the introduction of in vivo noninvasive magnetic resonance imaging (MRI) techniques. MRI allows for multiple in vivo time-point whole-brain acquisition in the same subject, thus it can be used longitudinally to monitor white matter brain change, intervention effects, as well as disease progression. However, MRI has low spatial resolution compared to gold standard cellular techniques and MRI measures are sensitive to a number of tissue properties resulting in a lack of specificity.

The following chapter describes in simple technical terms to non-imaging experts some common MRI techniques that can be used to investigate white matter structure noninvasively, covering some of the advantages and pitfalls of each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C (2017) Advances in noninvasive myelin imaging. Dev Neurobiol. 78(2):136–151

    Article  Google Scholar 

  2. Stuber C et al (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. NeuroImage 93 Pt 1:95–106

    Article  Google Scholar 

  3. Tardif CL et al (2016) Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. NeuroImage 131:55–72

    Article  Google Scholar 

  4. Deoni SC (2010) Quantitative relaxometry of the brain. Top Magn Reson Imaging 21:101–113

    Article  Google Scholar 

  5. Weiskopf N et al (2013) Quantitative multi-parameter mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation. Front Neurosci 7:95

    Article  Google Scholar 

  6. Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616

    Article  CAS  Google Scholar 

  7. Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192:521–529

    Article  CAS  Google Scholar 

  8. Sereno MI, Lutti A, Weiskopf N, Dick F (2013) Mapping the human cortical surface by combining quantitative T(1) with retinotopy. Cereb Cortex 23:2261–2268

    Article  Google Scholar 

  9. Lutti A, Dick F, Sereno MI, Weiskopf N (2014) Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage 93 Pt 2:176–188

    Article  Google Scholar 

  10. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56:407–415

    Article  Google Scholar 

  11. Samsonov A et al (2012) Quantitative MR imaging of two-pool magnetization transfer model parameters in myelin mutant shaking pup. NeuroImage 62:1390–1398

    Article  Google Scholar 

  12. Vavasour IM, Laule C, Li DK, Traboulsee AL, MacKay AL (2011) Is the magnetization transfer ratio a marker for myelin in multiple sclerosis? J Magn Reson Imaging 33:713–718

    Article  Google Scholar 

  13. Dortch RD et al (2013) Quantitative magnetization transfer imaging of human brain at 7 T. NeuroImage 64:640–649

    Article  Google Scholar 

  14. Alexander AL et al (2011) Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 1:423–446

    Article  Google Scholar 

  15. Schmierer K et al (2007) Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 26:41–51

    Article  Google Scholar 

  16. Sled JG et al (2004) Regional variations in normal brain shown by quantitative magnetization transfer imaging. Magn Reson Med 51:299–303

    Article  CAS  Google Scholar 

  17. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64

    Article  CAS  Google Scholar 

  18. Schmierer K et al (2010) Effects of formalin fixation on magnetic resonance indices in multiple sclerosis cortical gray matter. J Magn Reson Imaging 32:1054–1060

    Article  Google Scholar 

  19. Schmierer K et al (2008) Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. Magn Reson Med 59:268–277

    Article  Google Scholar 

  20. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  CAS  Google Scholar 

  21. Pierpaoli C et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage 13:1174–1185

    Article  CAS  Google Scholar 

  22. Beaulieu C (2009) The biological basis of diffusion anisotropy. In: Diffusion Mri: from quantitative measurement to in vivo neuroanatomy. Elsevier, Amsterdam, pp 105–126

    Chapter  Google Scholar 

  23. Kinoshita Y, Ohnishi A, Kohshi K, Yokota A (1999) Apparent diffusion coefficient on rat brain and nerves intoxicated with methylmercury. Environ Res 80:348–354

    Article  CAS  Google Scholar 

  24. Song SK et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20:1714–1722

    Article  Google Scholar 

  25. Kim JH et al (2006) Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 21:626–632

    Article  CAS  Google Scholar 

  26. Klawiter EC et al (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage 55:1454–1460

    Article  Google Scholar 

  27. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15:528–536

    Article  CAS  Google Scholar 

  28. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31:10937–10947

    Article  CAS  Google Scholar 

  29. Sexton CE et al (2014) Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci 34:15425–15436

    Article  CAS  Google Scholar 

  30. Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371

    Article  CAS  Google Scholar 

  31. Hofstetter S, Tavor I, Tzur Moryosef S, Assaf Y (2013) Short-term learning induces white matter plasticity in the fornix. J Neurosci 33:12844–12850

    Article  CAS  Google Scholar 

  32. Larsson HB, Thomsen C, Frederiksen J, Stubgaard M, Henriksen O (1992) In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging 10:7–12

    Article  CAS  Google Scholar 

  33. Pini L et al (2016) Brain atrophy in Alzheimer's disease and aging. Ageing Res Rev 30:25–48

    Article  Google Scholar 

  34. Krogsrud SK et al (2016) Changes in white matter microstructure in the developing brain--A longitudinal diffusion tensor imaging study of children from 4 to 11years of age. NeuroImage 124:473–486

    Article  Google Scholar 

  35. Lebel C et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage 60:340–352

    Article  CAS  Google Scholar 

  36. Burzynska AZ et al (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. NeuroImage 49:2104–2112

    Article  CAS  Google Scholar 

  37. Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152

    Article  Google Scholar 

  38. Sbardella E, Tona F, Petsas N, Pantano P (2013) DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:671730

    PubMed  PubMed Central  Google Scholar 

  39. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    Article  CAS  Google Scholar 

  40. Taubert M et al (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30:11670–11677

    Article  CAS  Google Scholar 

  41. Takeuchi H et al (2010) Training of working memory impacts structural connectivity. J Neurosci 30:3297–3303

    Article  CAS  Google Scholar 

  42. Sampaio-Baptista C et al (2013) Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci 33:19499–19503

    Article  CAS  Google Scholar 

  43. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y (2011) Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One 6:e20678

    Article  CAS  Google Scholar 

  44. Assaf Y, Basser PJ (2005) Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27:48–58

    Article  Google Scholar 

  45. Alexander DC et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52:1374–1389

    Article  Google Scholar 

  46. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016

    Article  Google Scholar 

  47. Assaf Y, Cohen Y (2000) Assignment of the water slow-diffusing component in the central nervous system using q-space diffusion MRS: implications for fiber tract imaging. Magn Reson Med 43:191–199

    Article  CAS  Google Scholar 

  48. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser P (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354

    Article  Google Scholar 

  49. Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132:1210–1220

    Article  Google Scholar 

  50. Horowitz A et al (2015) In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Struct Funct 220:1777–1788

    Article  Google Scholar 

  51. Tariq M, Schneider T, Alexander DC, Gandini Wheeler-Kingshott CA, Zhang H (2016) Bingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusion MRI. NeuroImage 133:207–223

    Article  Google Scholar 

  52. Behrens TEJ, Jbabdi S (2009) MR diffusion tractography. In: Diffusion Mri: from quantitative measurement to in vivo neuroanatomy. Elsevier, Amsterdam, pp 333–351

    Chapter  Google Scholar 

  53. Behrens T et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  CAS  Google Scholar 

  54. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155

    Article  CAS  Google Scholar 

  55. Jbabdi S, Lehman JF, Haber SN, Behrens TE (2013) Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci 33:3190–3201

    Article  CAS  Google Scholar 

  56. Hubbard PL, Parker GJM (2009) Validation of Tractography. In: Diffusion Mri: From Quantitative Measurement to in Vivo Neuroanatomy. Elsevier, Amsterdam, pp 353–375

    Chapter  Google Scholar 

  57. Azadbakht H et al (2015) Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex 25:4299–4309

    Article  Google Scholar 

  58. Dyrby TB et al (2007) Validation of in vitro probabilistic tractography. NeuroImage 37:1267–1277

    Article  Google Scholar 

  59. Kolasinski J et al (2012) A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain 135:2938–2951

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra Sampaio-Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sampaio-Baptista, C., Diosi, K., Johansen-Berg, H. (2019). Magnetic Resonance Techniques for Imaging White Matter. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics