Skip to main content

A Method to Detect Cytochrome c Oxidase Activity and Mitochondrial Proteins in Oligodendrocytes

  • Protocol
  • First Online:
Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

Cytochrome c oxidase or mitochondrial respiratory chain complex IV is where over 90% of oxygen is consumed. The relationship between complex IV activity and mitochondrial proteins, which provides a guide to understanding the mechanisms in primary mitochondrial disorders, has been determined by histochemistry (complex IV activity) and immunohistochemistry in serial sections. In the central nervous system (CNS), mitochondrial activity and immunoreactivity have been determined in populations of cells in serial sections as capturing cells in more than one section is difficult. In this report, we describe a method to determine complex IV activity in relation to mitochondrial proteins at a single-cell level in the CNS. We performed complex IV histochemistry and immunohistochemistry consecutively in snap-frozen sections. Although the product of complex IV histochemistry reduces the sensitivity of standard immunohistochemistry (secondary antibody and ABC method), the biotin-free Menapath polymer detection system enables mitochondrial proteins to be detected following complex IV histochemistry. The co-occurring chromogens may then be separately visualized and analyzed using multispectral imaging. Our technique is applicable for exploring mitochondrial defects within single cells, including oligodendrocytes, in a variety of CNS disorders and animal models of those diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fünfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. https://doi.org/10.1038/nature11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668. https://doi.org/10.1056/NEJMra022567

    Article  CAS  PubMed  Google Scholar 

  3. Dimlich RV, Showers MJ, Shipley MT (1990) Densitometric analysis of cytochrome oxidase in ischemic rat brain. Brain Res 516:181–191

    Article  CAS  Google Scholar 

  4. Johnson MA, Bindoff LA, Turnbull DM (1993) Cytochrome c oxidase activity in single muscle fibers: assay techniques and diagnostic applications. Ann Neurol 33:28–35. https://doi.org/10.1002/ana.410330106

    Article  CAS  PubMed  Google Scholar 

  5. Seligman AM, Karnovsky MJ, Wasserkrug HL, Hanker JS (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol 38:1–14

    Article  CAS  Google Scholar 

  6. Hevner RF, Liu S, Wong-Riley MT (1995) A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies. Neuroscience 65:313–342

    Article  CAS  Google Scholar 

  7. Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511

    Article  CAS  Google Scholar 

  8. Shoubridge EA (2001) Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 10:2277–2284

    Article  CAS  Google Scholar 

  9. Tanji K, Bonilla E (2000) Neuropathologic aspects of cytochrome C oxidase deficiency. Brain Pathol 10:422–430

    Article  CAS  Google Scholar 

  10. Johnson MA, Kadenbach B, Droste M et al (1988) Immunocytochemical studies of cytochrome oxidase subunits in skeletal muscle of patients with partial cytochrome oxidase deficiencies. J Neurol Sci 87:75–90

    Article  CAS  Google Scholar 

  11. Rahman S, Lake BD, Taanman JW et al (2000) Cytochrome oxidase immunohistochemistry: clues for genetic mechanisms. Brain 123(Pt 3):591–600

    Article  Google Scholar 

  12. Tanji K, Bonilla E (2008) Light microscopic methods to visualize mitochondria on tissue sections. Methods 46:274–280. https://doi.org/10.1016/j.ymeth.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  13. Fontanesi F, Soto IC, Barrientos A (2008) Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 60:557–568. https://doi.org/10.1002/iub.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taanman JW, Williams SL (2001) Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency? Biochem Soc Trans 29:446–451

    Article  CAS  Google Scholar 

  15. Pye D, Kyriakouli DS, Taylor GA et al (2006) Production of transmitochondrial cybrids containing naturally occurring pathogenic mtDNA variants. Nucleic Acids Res 34:e95–e95. https://doi.org/10.1093/nar/gkl516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elfering SL, Haynes VL, Traaseth NJ et al (2004) Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol 286:H22–H29. https://doi.org/10.1152/ajpheart.00766.2003

    Article  CAS  PubMed  Google Scholar 

  17. Martin LJ, Liu Z, Chen K et al (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46. https://doi.org/10.1002/cne.21160

    Article  CAS  PubMed  Google Scholar 

  18. Taylor RW, Barron MJ, Borthwick GM et al (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112:1351–1360. https://doi.org/10.1172/JCI19435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanji K, Kunimatsu T, Vu TH, Bonilla E (2001) Neuropathological features of mitochondrial disorders. Semin Cell Dev Biol 12:429–439. https://doi.org/10.1006/scdb.2001.0280

    Article  CAS  PubMed  Google Scholar 

  20. Sciacco M, Bonilla E, Schon EA et al (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3:13–19

    Article  CAS  Google Scholar 

  21. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402. https://doi.org/10.1038/nrg1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mannella CA (1998) Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 121:207–218. https://doi.org/10.1006/jsbi.1997.3954

    Article  CAS  PubMed  Google Scholar 

  23. Greaves LC, Preston SL, Tadrous PJ et al (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci U S A 103:714–719. https://doi.org/10.1073/pnas.0505903103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahad DJ, Ziabreva I, Campbell G et al (2009) Detection of cytochrome c oxidase activity and mitochondrial proteins in single cells. J Neurosci Methods 184:310–319. https://doi.org/10.1016/j.jneumeth.2009.08.020

    Article  CAS  PubMed  Google Scholar 

  25. Reeve AK, Krishnan KJ, Elson JL et al (2008) Nature of mitochondrial DNA deletions in substantia nigra neurons. Am J Hum Genet 82:228–235. https://doi.org/10.1016/j.ajhg.2007.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keilin D, Hartree EF (1945) Purification and properties of cytochrome c. Biochem J 39:289–292

    Article  CAS  Google Scholar 

  27. Mansfield JR, Hoyt C, Levenson RM (2008) Visualization of microscopy-based spectral imaging data from multi-label tissue sections. Curr Protoc Mol Biol Chapter 14:Unit 14.19–14.19.15. https://doi.org/10.1002/0471142727.mb1419s84

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don J. Mahad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campbell, G.R., Mahad, D.J. (2019). A Method to Detect Cytochrome c Oxidase Activity and Mitochondrial Proteins in Oligodendrocytes. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics