Skip to main content

The DTA Mouse Model for Oligodendrocyte Ablation and CNS Demyelination

  • Protocol
  • First Online:
Book cover Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

Genetic mouse models facilitate investigation of mechanisms underpinning human diseases and aid the development of novel therapeutic treatments. To better understand the demyelination and remyelination processes in adult-onset demyelinating diseases like multiple sclerosis (MS), we have developed the DTA mouse model system that allows for the widespread ablation of the mature oligodendrocytes, resulting in demyelination throughout the central nervous system (CNS). Induction of oligodendrocyte death in young adult DTA mice causes extensive CNS demyelination that leads to a severe neurological disease, followed by a full recovery that is associated with extensive replenishment of oligodendrocytes and remyelination. Thus, the DTA mouse enables investigation of the mechanisms that promote remyelination in MS and other adult-onset demyelinating diseases. Approximately 30 weeks later, the recovered DTA mice develop a fatal secondary demyelinating disease that is mediated by autoimmune T cells. Therefore, the DTA mouse model is also ideal for elucidating the role of oligodendrocyte death in eliciting autoimmunity in MS. In this chapter we describe the methods we used to generate the DTA mouse model and to analyze both the primary and secondary demyelinating diseases in DTA mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  Google Scholar 

  2. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283

    Article  CAS  Google Scholar 

  3. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  Google Scholar 

  4. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    Article  CAS  Google Scholar 

  5. Nakahara J, Aiso S, Suzuki N (2010) Autoimmune versus oligodendrogliopathy: the pathogenesis of multiple sclerosis. Arch Immunol Ther Exp 58(5):325–333

    Article  CAS  Google Scholar 

  6. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468

    Article  Google Scholar 

  7. Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13(7):507–514

    Article  CAS  Google Scholar 

  8. Traka M, Arasi K, Avila RL, Podojil JR, Christakos A, Miller SD, Soliven B, Popko B (2010) A genetic mouse model of adult-onset, pervasive central nervous system demyelination with robust remyelination. Brain 133(10):3017–3029

    Article  Google Scholar 

  9. Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez-Barbera JP (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43(3):129–135

    Article  CAS  Google Scholar 

  10. Doerflinger NH, Macklin WB, Popko B (2003) Inducible site-specific recombination in myelinating cells. Genesis 35(1):63–72

    Article  CAS  Google Scholar 

  11. Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39(11):1793–1803

    Article  CAS  Google Scholar 

  12. Maxwell IH, Maxwell F, Glode LM (1986) Regulated expression of a diphtheria toxin A-chain gene transfected into human cells: possible strategy for inducing cancer cell suicide. Cancer Res 46(9):4660–4664

    CAS  PubMed  Google Scholar 

  13. Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50(3):435–443

    Article  CAS  Google Scholar 

  14. Traka M, Podojil JR, McCarthy DP, Miller SD, Popko B (2016) Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci 19(1):65–74

    Article  CAS  Google Scholar 

  15. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206(2):165–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Traka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Traka, M. (2019). The DTA Mouse Model for Oligodendrocyte Ablation and CNS Demyelination. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics