Skip to main content

Single-Cell RNA Sequencing of Oligodendrocyte Lineage Cells from the Mouse Central Nervous System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

Single-cell RNA sequencing has emerged as a powerful technique for the identification of distinct cell states/populations in complex tissues. We have recently used this technology to investigate heterogeneity of cells of the oligodendrocyte lineage in the mouse central nervous system. In this chapter, we describe methods to perform single-cell RNA sequencing on this glial cell lineage, and discuss experimental and computational approaches to explore the potential and to tackle hurdles associated with this technology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tang FC et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/NMETH.1315

    Article  CAS  PubMed  Google Scholar 

  2. Pollen AA et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32:1053–1058. https://doi.org/10.1038/nbt.2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenberg AB et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–182. https://doi.org/10.1126/science.aam8999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeisel A et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. https://doi.org/10.1126/science.aaa1934

    Article  CAS  PubMed  Google Scholar 

  7. Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaitin DA et al (2014) Massively parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science 343:776–779. https://doi.org/10.1126/science.1247651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buettner F et al (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33:155–160. https://doi.org/10.1038/nbt.3102

    Article  CAS  PubMed  Google Scholar 

  10. Yan LY et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139. https://doi.org/10.1038/nsmb.2660

    Article  CAS  PubMed  Google Scholar 

  11. La Manno G et al (2016) Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167:566–580.e19. https://doi.org/10.1016/j.cell.2016.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Telley L et al (2016) Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351:1443–1446. https://doi.org/10.1126/science.aad8361

    Article  CAS  PubMed  Google Scholar 

  13. Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R (2016) Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 19:1131–1141. https://doi.org/10.1038/nn.4366

    Article  CAS  PubMed  Google Scholar 

  14. Marques S et al (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329. https://doi.org/10.1126/science.aaf6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marques S, Vanichkina D, van Bruggen D, Floriddia EM, Munguba H, Väremo L, Giacomello S, Falcão AM, Meijer M, Samudyata S, Codeluppi S, Björklund AK, Linnarsson S, Hjerling-Leffler J, Taft R.J, Castelo-Branco G. (2018) Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev Cell 46:504–517.e7

    Google Scholar 

  16. Lassmann H (2012) The birth of oligodendrocytes in the anatomical and neuropathological literature: the seminal contribution of Pio del Rio-Hortega. 1921. Clin Neuropathol 31:435–436. https://doi.org/10.5414/NP301002

    Article  PubMed  Google Scholar 

  17. Gill AS, Binder DK (2007) Wilder Penfield, Pio del Rio-Hortega, and the discovery of oligodendroglia. Neurosurgery 60:940–948. https://doi.org/10.1227/01.NEU.0000255448.97730.34 discussion 940–948

    Article  PubMed  Google Scholar 

  18. Vinet J et al (2010) Subclasses of oligodendrocytes populate the mouse hippocampus. Eur J Neurosci 31:425–438. https://doi.org/10.1111/j.1460-9568.2010.07082.x

    Article  PubMed  Google Scholar 

  19. Murtie JC, Macklin WB, Corfas G (2007) Morphometric analysis of oligodendrocytes in the adult mouse frontal cortex. J Neurosci Res 85:2080–2086. https://doi.org/10.1002/jnr.21339

    Article  CAS  PubMed  Google Scholar 

  20. Bjartmar C, Hildebrand C, Loinder K (1994) Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections. Glia 11:235–244. https://doi.org/10.1002/glia.440110304

    Article  CAS  PubMed  Google Scholar 

  21. Bakiri Y, Karadottir R, Cossell L, Attwell D (2011) Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum. J Physiol 589:559–573. https://doi.org/10.1113/jphysiol.2010.201376

    Article  CAS  PubMed  Google Scholar 

  22. Anderson ES, Bjartmar C, Westermark G, Hildebrand C (1999) Molecular heterogeneity of oligodendrocytes in chicken white matter. Glia 27:15–21

    Article  CAS  PubMed  Google Scholar 

  23. Anderson ES, Bjartmar C, Hildebrand C (2000) Myelination of prospective large fibres in chicken ventral funiculus. J Neurocytol 29:755–764

    Article  CAS  PubMed  Google Scholar 

  24. Kessaris N et al (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179. https://doi.org/10.1038/nn1620

    Article  CAS  PubMed  Google Scholar 

  25. Tripathi RB et al (2011) Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci 31:6809–6819. https://doi.org/10.1523/JNEUROSCI.6474-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klinghoffer RA, Hamilton TG, Hoch R, Soriano P (2002) An allelic series at the PDGF alpha R locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2:103–113. https://doi.org/10.1016/S1534-5807(01)00103-4

    Article  CAS  PubMed  Google Scholar 

  27. Roesch K et al (2008) The transcriptome of retinal miller glial cells. J Comp Neurol 509:225–238. https://doi.org/10.1002/cne.21730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Islam S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166. https://doi.org/10.1038/nmeth.2772

    Article  CAS  PubMed  Google Scholar 

  29. Islam S et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167. https://doi.org/10.1101/gr.110882.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Islam S et al (2012) Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc 7:813–828. https://doi.org/10.1038/nprot.2012.022

    Article  CAS  PubMed  Google Scholar 

  31. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133–145. https://doi.org/10.1038/nrg3833

    Article  CAS  PubMed  Google Scholar 

  32. Tsafrir D et al (2005) Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21:2301–2308. https://doi.org/10.1093/bioinformatics/bti329

    Article  CAS  PubMed  Google Scholar 

  33. Trapnell C et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–U251. https://doi.org/10.1038/nbt.2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magwene PM, Lizardi P, Kim J (2003) Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19:842–850. https://doi.org/10.1093/bioinformatics/btg081

    Article  CAS  PubMed  Google Scholar 

  35. Nichterwitz S et al (2016) Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat Commun 7:12139. https://doi.org/10.1038/ncomms12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Didar TF, Li K, Veres T, Tabrizian M (2013) Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device. Biomaterials 34:5588–5593. https://doi.org/10.1016/j.biomaterials.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  37. Lun AT, Bach K, Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 17:75. https://doi.org/10.1186/s13059-016-0947-7

    Article  CAS  PubMed  Google Scholar 

  38. Rousseeuw PJ, Kaufman L (1990) Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  39. Hartigan JA, Wong MA (1979) Algorithm AS 136: A K-means clustering algorithm. J Roy Statist Soc Series C (Appl Statist) 28:100–108. https://doi.org/10.2307/2346830

    Article  Google Scholar 

  40. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976. https://doi.org/10.1126/science.1136800

    Article  CAS  PubMed  Google Scholar 

  42. Xu C, Su ZC (2015) Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31:1974–1980. https://doi.org/10.1093/bioinformatics/btv088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan J et al (2016) Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods 13:241–244. https://doi.org/10.1038/nmeth.3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Elisa Floriddia for proofreading and Amit Zeisel for comments. Work in G.C.-B.’s research group was supported by Swedish Research Council, European Union (FP7/Marie Curie Integration Grant EPIOPC, Horizon 2020 European Research Council Consolidator Grant EPIScOPE), European Committee for Treatment and Research in Multiple Sclerosis, Swedish Brain Foundation, Swedish Cancer Society, Ming Wai Lau Centre for Reparative Medicine, Petrus och Augusta Hedlunds Foundation and Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Castelo-Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marques, S., van Bruggen, D., Castelo-Branco, G. (2019). Single-Cell RNA Sequencing of Oligodendrocyte Lineage Cells from the Mouse Central Nervous System. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics