Skip to main content

Astrocytes and Circadian Rhythms: An Emerging Astrocyte–Neuron Synergy in the Timekeeping System

  • Protocol
  • First Online:
Book cover Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1938))

Abstract

Animals have an internal timekeeping system to anticipate daily changes associated with the transition of day to night, which is deeply involved in the regulation and maintenance of behavioral and physiological processes. Prevailing knowledge associated the control of circadian clocks to a network of neurons in the central pacemaker, the suprachiasmatic nucleus (SCN), but astrocytes are rapidly emerging as key cellular contributors to the timekeeping system. However, how these glial cells impact the neuronal clock to modulate rhythmic neurobehavioral outputs just begin to be investigated. Astrocyte–neuron cocultures are an excellent exploratory method to further characterize the critical role of circadian communication between nerve cells, as well as to address the role of astrocytes as modulators and targets of neuronal rhythmic behaviors. Here, we describe a robust method to study astrocyte rhythmic interactions with neurons by coculturing them with primary neurons in physically separated layers. This simple coculture system provides hints on in vivo signaling processes. Moreover, it allows investigating cell-type specific effects separately as well as the identification of extracellular astrocytic or neuronal factors involved in rhythm generation in both cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi JS, Hong H, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775

    Article  CAS  Google Scholar 

  2. Doherty CJ, Kay SA (2010) Circadian control of global gene expression patterns. Annu Rev Genet 44:419–444

    Article  CAS  Google Scholar 

  3. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    Article  CAS  Google Scholar 

  4. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ 3rd, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616

    Article  CAS  Google Scholar 

  5. Maywood ES, Chesham JE, O'Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 108(34):14306–14311

    Article  CAS  Google Scholar 

  6. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  CAS  Google Scholar 

  7. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  CAS  Google Scholar 

  8. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  Google Scholar 

  9. Sul JY, Orosz G, Rs G, Haydon PG (2004) Astrocytic connectivity in the hippocampus. Neuron Glia Biol 1:3–11

    Article  Google Scholar 

  10. Tian GF, Takano T, Lin JH, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58(7):773–787

    Article  CAS  Google Scholar 

  11. Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2):404–408

    Article  CAS  Google Scholar 

  12. Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D (2017) Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8:14336

    Article  CAS  Google Scholar 

  13. Marpegan L, Krall TJ, Herzog ED (2009) Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J Biol Rhythm 24(2):135–143

    Article  CAS  Google Scholar 

  14. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31(23):8342–8350

    Article  CAS  Google Scholar 

  15. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11(1):35–42

    Article  CAS  Google Scholar 

  16. Prosser RA, Edgar DM, Heller HC, Miller JD (1994) A possible glial role in the mammalian circadian clock. Brain Res 643(1–2):296–301

    Article  CAS  Google Scholar 

  17. Shinohara K, Funabashi T, Mitushima D, Kimura F (2000) Effects of gap junction blocker on vasopressin and vasoactive intestinal polypeptide rhythms in the rat suprachiasmatic nucleus in vitro. Neurosci Res 38(1):43–47

    Article  CAS  Google Scholar 

  18. Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55(3):435–447

    Article  CAS  Google Scholar 

  19. Ng FS, Tangredi MM, Jackson FR (2011) Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 21(8):625–634

    Article  CAS  Google Scholar 

  20. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes control circadian timekeeping in the Suprachiasmatic nucleus via Glutamatergic signaling. Neuron 93(6):1420–1435.e5

    Article  CAS  Google Scholar 

  21. Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED (2017) Astrocytes regulate daily rhythms in the Suprachiasmatic nucleus and behavior. Curr Biol 27(7):1055–1061

    Article  CAS  Google Scholar 

  22. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  CAS  Google Scholar 

  23. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    Article  CAS  Google Scholar 

  24. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29(6):999–1005

    Article  CAS  Google Scholar 

  25. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41(5):1484–1487

    Article  CAS  Google Scholar 

  26. Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367

    Article  CAS  Google Scholar 

  27. Skytt DM, Madsen KK, Pajęcka K, Schousboe A, Waagepetersen HS (2010) Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex. Neurochem Res 35(12):2043–2052

    Article  CAS  Google Scholar 

  28. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  CAS  Google Scholar 

  29. Bloch G, Herzog ED, Levine JD, Schwartz WJ (2013) Socially synchronized circadian oscillators. Proc Biol Sci 280(1765):20130035

    Article  Google Scholar 

  30. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705

    Article  CAS  Google Scholar 

  31. Halberg F, Tong YL, Johnson EA (1967) Circadian system phase, an aspect of temporal morphology: procedures and illustrative examples. In: von Mayersbach H (ed) The cellular aspects of biorhythms. Springer, Berlin, pp 20–48

    Chapter  Google Scholar 

  32. Cornélissen G, Halberg F (2005) Chronomedicine. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics 2, vol 2. Wiley, New York, pp 796–812

    Google Scholar 

  33. Skoff RP, Knapp PE (1991) Division of astroblasts and oligodendroblasts in postnatal rodent brain: evidence for separate astrocyte and oligodendrocyte lineages. Glia 4(2):165–174

    Article  CAS  Google Scholar 

  34. Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484(7394):376–380

    Article  CAS  Google Scholar 

  35. Lim R, Mitsunobu K, Li WK (1993) Maturation-stimulating effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture. Exp Eye Res 79:243–246

    Google Scholar 

  36. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  CAS  Google Scholar 

  37. Hertz L, Bock E, Schousboe A (1978) GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev Neurosci 1:226–238

    Article  CAS  Google Scholar 

  38. Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ, Levison SW (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 3:e00062

    Article  Google Scholar 

  39. Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L, Cahoy JD, Daneman R, Zong H, Ellisman MH, Barres BA (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71(5):799–811

    Article  CAS  Google Scholar 

  40. Jungblut M, Tiveron MC, Barral S, Abrahamsen B, Knöbel S, Pennartz S, Schmitz J, Perraut M, Pfrieger FW, Stoffel W, Cremer H, Bosio A (2012) Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia 60(6):894–907

    Article  Google Scholar 

  41. Codeluppi S, Gregory EN, Kjell J, Wigerblad G, Olson L, Svensson CI (2011) Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. J Neurosci Methods 197:118–127

    Article  Google Scholar 

  42. Barca O, Ferré S, Seoane M, Prieto JM, Lema M, Señarís R, Arce VM (2003) Interferon beta promotes survival in primary astrocytes through phosphatidylinositol 3-kinase. J Neuroimmunol 139(1-2):155–159

    Article  CAS  Google Scholar 

  43. Barca O, Seoane M, Ferré S, Prieto JM, Lema M, Señarís R, Arce VM (2007) Mechanisms of interferon-β-induced survival in fetal and neonatal primary astrocytes. Neuroimmunomodulation 14:39–45

    Article  CAS  Google Scholar 

  44. Barca O, Costoya JA, Señarís RM, Arce VM (2008) Interferon-beta protects astrocytes against tumour necrosis factor-induced apoptosis via activation of p38 mitogen-activated protein kinase. Exp Cell Res 314(11–12):2231–2237

    Article  CAS  Google Scholar 

  45. Abe T, Takahashi S, Suzuki N (2006) Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 26(2):153–160

    Article  CAS  Google Scholar 

  46. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy. Dev Neurosci 20(4-5):310–320

    Article  CAS  Google Scholar 

  47. Gandhi GK, Ball KK, Cruz NF, Dienel GA (2010) Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2(2):e00030

    Article  Google Scholar 

  48. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68

    Article  CAS  Google Scholar 

  49. Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4(2):e00078

    Article  Google Scholar 

  50. Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26

    Article  Google Scholar 

  51. Crocker SJ, Frausto RF, Whitton JL, Milner R (2008) A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 56(11):1187–1198

    Article  Google Scholar 

  52. Du F, Qian ZM, Zhu L, Wu XM, Qian C, Chan R, Ke Y (2010) Purity, cell viability, expression of GFAP and bystin in astrocytes cultured by different procedures. J Cell Biochem 109(1):30–37

    CAS  PubMed  Google Scholar 

  53. Norton WT, Farooq M (1989) Astrocytes cultured from mature brain derive from glial precursor cells. J Neurosci 9(3):769–775

    Article  CAS  Google Scholar 

  54. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9-10):1439–1451

    Article  CAS  Google Scholar 

  55. Beaulé C, Swanstrom A, Leone MJ, Herzog ED (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS One 4(10):e7476

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Nanni and C. Chiabrera for their excellent support with the neuronal cultures. This work was supported by Fondazione Istituto Italiano di Tecnologia and by the European Research Executive Agency (REA) through the FP7-PEOPLE-2014-IEF “ASTROCLOCK” (629867) and Fondazione CARIPLO research grant (2015-0590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Barca Mayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barca Mayo, O., Berdondini, L., De Pietri Tonelli, D. (2019). Astrocytes and Circadian Rhythms: An Emerging Astrocyte–Neuron Synergy in the Timekeeping System. In: Di Benedetto, B. (eds) Astrocytes. Methods in Molecular Biology, vol 1938. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9068-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9068-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9067-2

  • Online ISBN: 978-1-4939-9068-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics