Skip to main content

Preprocessing and Computational Analysis of Single-Cell Epigenomic Datasets

  • Protocol
  • First Online:
Computational Methods for Single-Cell Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1935))

Abstract

Recent technological developments have enabled the characterization of the epigenetic landscape of single cells across a range of tissues in normal and diseased states and under various biological and chemical perturbations. While analysis of these profiles resembles methods from single-cell transcriptomic studies, unique challenges are associated with bioinformatics processing of single-cell epigenetic data, including a much larger (10–1,000×) feature set and significantly greater sparsity, requiring customized solutions. Here, we discuss the essentials of the computational methodology required for analyzing common single-cell epigenomic measurements for DNA methylation using bisulfite sequencing and open chromatin using ATAC-Seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ (2017) chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods 14(10):975–978. https://doi.org/10.1038/nmeth.4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27(11):1571–1572. https://doi.org/10.1093/bioinformatics/btr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oles AK, Pages H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12(2):115–121. https://doi.org/10.1038/nmeth.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490. https://doi.org/10.1038/nature14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, Steemers FJ, Trapnell C, Shendure J (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348(6237):910–914. https://doi.org/10.1126/science.aab1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lareau CA, Ulirsch JC, Bao EL, Ludwig LS, Guo MH, Benner C, Satpathy AT, Salem R, Hirschhorn JN, Finucane HK, Aryee MJ, Buenrostro JD, Sankaran VG (2018) Interrogation of human hematopoiesis at single-cell and single-variant resolution. bioRxiv. https://doi.org/10.1101/255224

Download references

Acknowledgments

We are grateful to Jason Buenrostro for useful feedback in the discussion of the scATAC-seq computational analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Aryee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lareau, C., Kangeyan, D., Aryee, M.J. (2019). Preprocessing and Computational Analysis of Single-Cell Epigenomic Datasets. In: Yuan, GC. (eds) Computational Methods for Single-Cell Data Analysis. Methods in Molecular Biology, vol 1935. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9057-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9057-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9056-6

  • Online ISBN: 978-1-4939-9057-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics