Skip to main content

Mass Spectrometric Determination of Protein Ubiquitination

  • Protocol
  • First Online:
Book cover Post-Translational Modification of Proteins

Abstract

Mass spectrometric methods of determining protein ubiquitination are described. Characteristic mass shifts and fragment ions indicating ubiquitinated lysine residues in tryptic and gluC digests are discussed. When a ubiquitinated protein is enzymatically digested, a portion of the ubiquitin side chain remains attached to the modified lysine. This “tag” can be used to distinguish a ubiquitinated peptide from the unmodified version, and can be incorporated into automated database searching. Several tags are discussed, the GGK and LRGGK tags, resulting from complete and incomplete tryptic digestion of the protein, and the STLHLVLRLRGG tag from a gluC-digested protein.

A ubiquitinated peptide has two N-termini—one from the original peptide and the other from the ubiquitin side chain. Thus, it is possible to have two series of b ions and y ions, the additional series is the one that includes fragments containing portions of the ubiquitin side chain, and any diagnostic ions for the modification must include portions of this side chain. Fragment ions involving any part of the “normal” peptide will vary in mass according to the peptide being modified and will therefore not be of general diagnostic use. These diagnostic ions, found through examination of the MS/MS spectra of model ubiquitinated tryptic and gluC peptides, have not previously been reported. These ions can be used to trigger precursor ion scanning in automated MS/MS data acquisition scanning modes.

Viorel Mocanu is deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Ann Rev Genet 30:405–439

    Article  CAS  PubMed  Google Scholar 

  2. Levinger L, Varshavsky A (1982) Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28(2):375–385

    Article  CAS  PubMed  Google Scholar 

  3. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305):132–138

    Article  CAS  PubMed  Google Scholar 

  4. Sasaki A, Inagaki-Ohara K, Yoshida T, Yamanaka A, Sasaki M, Yasukawa H, Koromilas A, Yoshimura A (2003) The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. J Biol Chem 278(4):2432–2436

    Article  CAS  PubMed  Google Scholar 

  5. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev. Biochem 61:761–807

    Article  CAS  PubMed  Google Scholar 

  6. Pickart CM (2001) Ubiquitin enters the new millennium. Mol Cell 8:499–504

    Article  CAS  PubMed  Google Scholar 

  7. Hicke L (2001) A new ticket for entry into budding vesicles—ubiquitin. Cell 106:527–530

    Article  CAS  PubMed  Google Scholar 

  8. Johnson ES (2002) Ubiquitin branches out. Nat Cell Biol 4:E295–E298

    Article  CAS  PubMed  Google Scholar 

  9. Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108

    Article  CAS  PubMed  Google Scholar 

  10. Conaway RC, Brower CS, Conaway JW (2002) Emerging roles of ubiquitin in transcription regulation. Science 296:1254–1258

    Article  CAS  PubMed  Google Scholar 

  11. Hochstrasser M (2002) Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2:E153–E157

    Article  CAS  Google Scholar 

  12. Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7(8):750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Denison C, Kirkpatrick DS, Gygi SP (2005) Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr Opin Chem Biol 9(1):69–75

    Article  CAS  PubMed  Google Scholar 

  14. Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta Proteins Proteomics 1764(12):1940–1947

    Article  CAS  Google Scholar 

  15. Drews O, Zong C, Ping P (2007) Exploring proteasome complexes by proteomic approaches. Proteomics 7(7):1047–1058

    Article  CAS  PubMed  Google Scholar 

  16. Low TY, Magliozzi R, Guardavaccaro D, Heck AJ (2013) Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics 13(3–4):526–537

    Article  CAS  PubMed  Google Scholar 

  17. Xu G, Jaffrey SR (2013) Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev 29(1):73–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gururaja T, Li W, Noble WS et al (2003) Multiple functional categories of proteins identified in an in vitro cellular ubiquitin affinity extract using shotgun peptide sequencing. J Proteome Res 2(4):394–404

    Article  CAS  PubMed  Google Scholar 

  19. Peng J, Schwartz DR, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    Article  CAS  PubMed  Google Scholar 

  20. Hitchcock AL, Auld K, Gygi SP, Silver PA (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci U S A 100(22):12735–12740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng J, Cheng D (2005) Proteomic analysis of ubiquitin conjugates in yeast. Methods Enzymol 399(Part B):367–381

    Article  CAS  PubMed  Google Scholar 

  22. Kirkpatrick DS, Weldon SF, Tsaprailis G et al (2005) Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics 5(8):2104–2111

    Article  CAS  PubMed  Google Scholar 

  23. Vasilescu J, Smith JC, Ethier M, Figeys D (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4(6):2192–2200

    Article  CAS  PubMed  Google Scholar 

  24. Fujimuro M, Sawada H, Yokosawa H (1994) Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett 349(2):173–180

    Article  CAS  PubMed  Google Scholar 

  25. Hatakeyama S, Matsumoto M, Nakayama KI (2005) Mapping of ubiquitination sites on target proteins. Methods Enzymol 399(Part B):277–286

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto M, Hatakeyama S, Oyamada K et al (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5(16):4145–4151

    Article  CAS  PubMed  Google Scholar 

  27. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner SA, Beli P, Weinert BT et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111.013284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sylvestersen KB, Young C, Nielsen ML (2013) Advances in characterizing ubiquitylation sites by mass spectrometry. Curr Opin Chem Biol 17(1):49–58

    Article  CAS  PubMed  Google Scholar 

  30. Kim W, Bennett EJ, Huttlin EL et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laub M, Steppuhn JA, Bluggel M et al (1998) Modulation of calmodulin function by ubiquitin-calmodulin ligase and identification of the responsible ubiquitylation site in vertebrate calmodulin. Eur J Biochem 255(2):422–431

    Article  CAS  PubMed  Google Scholar 

  32. Marotti LA Jr, Newitt R, Wang Y et al (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41(16):5067–5074

    Article  CAS  PubMed  Google Scholar 

  33. Warren MRE, Parker CE, Mocanu V et al (2005) Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid Commun Mass Spectrom 19(4):429–437

    Article  CAS  PubMed  Google Scholar 

  34. Cooper HJ, Heath JK, Jaffray E et al (2004) Identification of sites of ubiquitination in proteins: a Fourier transform ion cyclotron resonance mass spectrometry approach. Anal Chem 76(23):6982–6988

    Article  CAS  PubMed  Google Scholar 

  35. Greer SF, Zika E, Conti B et al (2003) Enhancement of CIITA transcriptional function by ubiquitin. Nat Immunol 4(11):1074–1082

    Article  CAS  PubMed  Google Scholar 

  36. Parker CE, Tomer KB (2000) Epitope mapping by a combination of epitope exclusion and MALDI-MS. In: Chapman JR (ed) Methods in molecular biology, Mass spectrometry of proteins and peptides, vol 146. Humana Press, Totowa, pp 185–201

    Google Scholar 

  37. Kast J, Parker CE, van der Drift K et al (2003) Matrix-assisted laser desorption/ionization directed nano-electrospray ionization tandem mass spectrometric analysis for protein identification. Rapid Commun Mass Spectrom 17(16):1825–1834

    Article  CAS  PubMed  Google Scholar 

  38. Borchers C, Parker CE, Deterding LJ, Tomer KB (1999) Preliminary comparison of precursor scans and liquid chromatography-tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. J Chromatogr A 854(1–2):119–130

    Article  CAS  PubMed  Google Scholar 

  39. Steen H, Kuester B, Fernandez M et al (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal Chem 73(7):1440–1448

    Article  CAS  PubMed  Google Scholar 

  40. Steen H, Kuster B, Fernandez M et al (2002) Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 277(2):1031–1039

    Article  CAS  PubMed  Google Scholar 

  41. Warren MRE, Parker CE, Mocanu V, et al (2004) Fragmentation of ubiquitinated peptides: novel ubiquitin-specific fragment ions. In: 52nd annual conference on mass spectrometry and allied topics, Nashville, TN, May 23–27, 2004

    Google Scholar 

  42. Jeon HB, Choi ES, Yoon JH et al (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun 357(3):731–736

    Article  CAS  PubMed  Google Scholar 

  43. Denis NJ, Vasilescu J, Lambert J-P et al (2007) Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics 7(6):868–874

    Article  CAS  PubMed  Google Scholar 

  44. Vasilescu J, Zweitzig DR, Denis NJ et al (2007) The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells. J Proteome Res 6(1):298–305

    Article  CAS  PubMed  Google Scholar 

  45. Kaiser P, Wohlschlegel JA (2005) Identification of ubiquitination sites and determination of ubiquitin-chain architectures by mass spectrometry. Methods Enzymol 399(Ubiquitin and Protein Degradation, Part B):266–277

    Article  CAS  PubMed  Google Scholar 

  46. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  47. Cripps D, Thomas SN, Jeng Y et al (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281(16):10825–10838

    Article  CAS  PubMed  Google Scholar 

  48. Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  49. Udeshi ND, Mani DR, Eisenhaure T et al (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 11(5):148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zăkova II, Kulichkova VA, Ermolaeva IB et al (2013) Characterization of the extracellular proteasomes and its interacting proteins by iTRAQ mass spectrometry. Tsitologiia 55(2):111–122

    Google Scholar 

  51. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Applied_Biosystems (2009) mTRAQ. http://www.sciex.com/products/standards-and-reagents/mtraq-reagents.xml?country=Canada. Accessed 27 Mar 2014

  53. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods (San Diego, CA, United States) 35(3):265–273

    Article  CAS  Google Scholar 

  54. Huang F, Kirkpatrick D, Jiang X et al (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21(6):737–748

    Article  CAS  PubMed  Google Scholar 

  55. Kirkpatrick DS, Hathaway NA, Hanna J et al (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8(7):700–710

    Article  CAS  PubMed  Google Scholar 

  56. Kim HT, Kim KP, Lledias F et al (2007) Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 282(24):17375–17386

    Article  CAS  PubMed  Google Scholar 

  57. Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  PubMed  Google Scholar 

  58. Wang D, Cotter RJ (2005) Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry. Anal Chem 77(5):1458–1466

    Article  CAS  PubMed  Google Scholar 

  59. Wang D, Xu W, McGrath SC et al (2005) Direct identification of ubiquitination sites on ubiquitin-conjugated CHIP using MALDI mass spectrometry. J Proteome Res 4(5):1554–1560

    Article  CAS  PubMed  Google Scholar 

  60. Edman P (1950) Preparation of phenyl thiohydantoins from some natural amino acids. Acta Chem Scand 4:277–282

    Article  CAS  Google Scholar 

  61. Keough T, Youngquist RS, Lacey MP (2003) Sulfonic acid derivatives for peptide sequencing by MALDI MS. Anal Chem 75(7):156A–165A

    Article  CAS  PubMed  Google Scholar 

  62. Wang D, Kalb SR, Cotter RJ (2004) Improved procedures for N-terminal sulfonation of peptides for matrix-assisted laser desorption/ionization post-source decay peptide sequencing. Rapid Commun Mass Spectrom 18(1):96–102

    Article  CAS  PubMed  Google Scholar 

  63. Leon IR, Neves-Ferreira AGC, Valente RH et al (2007) Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. J Mass Spectrom 42(6):781–792

    Article  CAS  PubMed  Google Scholar 

  64. Chen W, Lee PJ, Shion H et al (2007) Improving de novo sequencing of peptides using a charged tag and C-terminal digestion. Anal Chem 79(4):1583–1590

    Article  CAS  PubMed  Google Scholar 

  65. Huang Z-H, Wu J, Roth KDW et al (1997) A picomole-scale method for charge derivatization of peptides for sequence analysis by mass spectrometry. Anal Chem 69(2):137–144

    Article  CAS  PubMed  Google Scholar 

  66. Munchbach M, Quadroni M, Miotto G, James P (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal Chem 72(17):4047–4057

    Article  CAS  PubMed  Google Scholar 

  67. Petrotchenko EV, Serpa JJ, Borchers CH (2010) Use of a combination of isotopically coded cross-linkers and isotopically coded N-terminal modification reagents for selective identification of inter-peptide crosslinks. Anal Chem 82(3):817–823

    Article  CAS  PubMed  Google Scholar 

  68. Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev 25:663–682

    Article  CAS  PubMed  Google Scholar 

  69. Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460

    Article  CAS  PubMed  Google Scholar 

  70. Peter JF, Tomer KB (2001) A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal Chem 73(16):4012–4019

    Article  CAS  PubMed  Google Scholar 

  71. Hall MC, Torres MP, Schroeder GK, Borchers CH (2003) Mnd2 and Swm1 are core subunits of the Saccharomyces cerevisiae anaphase-promoting complex. J Biol Chem 278(19):16698–16705

    Article  CAS  PubMed  Google Scholar 

  72. Rubin MA, Zerkowski MP, Camp RL et al (2004) Quantitative determination of expression of the prostate cancer protein alpha-methylacyl-CoA racemase using automated quantitative analysis (AQUA): a novel paradigm for automated and continuous biomarker measurements. Am J Pathol 164(3):831–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Draffan GH, Clare RA, Goodwin BL et al (1974) Stable isotope labeling in quantitative drug and metabolite measurement by gas chromatography-mass spectrometry. Adv Mass Spectrom 6:245–250

    CAS  Google Scholar 

  74. Lee MG, Millard BJ (1975) A comparison of unlabeled and labeled internal standards for quantification by single and multiple ion monitoring. Biomed Mass Spectrom 2(2):78–81

    Article  CAS  Google Scholar 

  75. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  76. Beli P, Lukashchuk N, Wagner SA et al (2012) Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46(2):212–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dephoure N, Zhou C, Villen J et al (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105(31):10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  79. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Article  PubMed  CAS  Google Scholar 

  80. Anania VG, Pham VC, Huang X et al (2014) Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins. Mol Cell Proteomics 13(1):145–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study on the fragmentation of ubiquitinated peptides [33] was funded by a gift from an anonymous donor to support research in proteomics and cystic fibrosis, and grants from the Cystic Fibrosis Foundation (CFFTI STUTTS01U0) and from NIH (ES11997, 5U54HD035041-07, and P30 CA 16086-25). Current funding for CHB and CEP is from Genome Canada and Genome British Columbia through the Genomic Innovations Network (GIN), for operations (204PRO) and technology development (214PRO), and the Genomics Technology Platform (264PRO). CHB is also grateful for support from the Leading Edge Endowment Fund (University of Victoria), and from the Segal McGill Chair in Molecular Oncology at McGill University (Montreal, Quebec, Canada). CHB is also grateful for support from the Warren Y. Soper Charitable Trust and the Alvin Segal Family Foundation to the Jewish General Hospital (Montreal, Quebec, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph H. Borchers .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of our friend and colleague, Viorel Mocanu

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parker, C.E., Warren Hines, M.R.E., Mocanu, V., Greer, S.F., Borchers, C.H. (2019). Mass Spectrometric Determination of Protein Ubiquitination. In: Kannicht, C. (eds) Post-Translational Modification of Proteins. Methods in Molecular Biology, vol 1934. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9055-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9055-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9053-5

  • Online ISBN: 978-1-4939-9055-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics