Skip to main content

Screening Targeted Legionella pneumophila Mutant Libraries In Vivo Using INSeq

  • Protocol
  • First Online:
Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe inflammatory pneumonia in humans called Legionnaires’ disease, which results from bacterial replication within alveolar macrophages. L. pneumophila replication within macrophages is dependent on hundreds of individual protein virulence factors. Understanding how these virulence factors contribute to disease in an animal model is important to reveal aspects of host-pathogen interactions. High-throughput sequencing (HTS)-based screens using transposon (Tn) mutagenesis are powerful approaches to identify bacterial genes important for host-pathogen interactions. Since large libraries of Tn mutants are at risk of bottleneck effects, phenotypic screening of smaller numbers of targeted mutants is an effective alternative. Insertion sequencing (INSeq) is a method that enables production of targeted Tn mutant libraries and has been used successfully to identify L. pneumophila virulence phenotypes. In this chapter, a protocol is described for using INSeq to generate an arrayed L. pneumophila Tn mutant library and for subsequent screening of targeted mutant pools in a mouse model of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442

    Article  Google Scholar 

  2. Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR (2017) Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc Natl Acad Sci U S A 63:201708553

    Google Scholar 

  3. Goodman AL, Mcnulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host and Microbe 6:279–289

    Article  CAS  Google Scholar 

  4. Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB (2013) A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 9:e1003582

    Article  CAS  Google Scholar 

  5. Wang N, Ozer EA, Mandel MJ, Hauser AR (2014) Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. MBio 5:e01163–e01114

    PubMed  PubMed Central  Google Scholar 

  6. Gao B, Lara-Tejero M, Lefebre M, Goodman AL, Galán JE (2014) Novel components of the flagellar system in epsilonproteobacteria. MBio 5:e01349–e01314

    PubMed  PubMed Central  Google Scholar 

  7. Wong SM, Bernui M, Shen H, Akerley BJ (2013) Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci U S A 110:15413–15418

    Article  CAS  Google Scholar 

  8. Abel S, Abel zur Wiesch P, Davis BM, Waldor MK (2015) Analysis of bottlenecks in experimental models of infection. PLoS Pathog 11:e1004823

    Article  Google Scholar 

  9. Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel zur Wiesch P, Zhou X, Davis BM, Waldor MK (2016) Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc Natl Acad Sci U S A 113:6283–6288

    Article  CAS  Google Scholar 

  10. Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 6:1969–1980

    Article  CAS  Google Scholar 

  11. Newton HJ, Ang DKY, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  CAS  Google Scholar 

  12. Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331

    Article  CAS  Google Scholar 

  13. Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876

    Article  CAS  Google Scholar 

  14. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci 95:1669–1674

    Article  CAS  Google Scholar 

  15. Doleans A, Aurell H, Reyrolle M, Lina G, Freney J, Vandenesch F, Etienne J, Jarraud S (2004) Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol 42:458–460

    Article  Google Scholar 

  16. Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508

    Article  Google Scholar 

  17. Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Baine WB (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Catrenich CE, Johnson W (1989) Characterization of the selective inhibition of growth of virulent Legionella pneumophila by supplemented Mueller-Hinton medium. Infect Immun 57:1862–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sadosky AB, Wiater LA, Shuman HA (1993) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61:5361–5373

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18

    Article  Google Scholar 

  21. Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104

    Article  CAS  Google Scholar 

  22. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325

    Article  CAS  Google Scholar 

  23. Hori JI, Zamboni DS (2013) The mouse as a model for pulmonary legionella infection. Methods Mol Biol 954:493–503

    Article  CAS  Google Scholar 

  24. Morgan RD, Bhatia TK, Lovasco L, Davis TB (2008) MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res 36:6558–6570

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Craig Roy, Andrew Goodman, Thomas Cullen, and Whitman Schofield for the assistance in protocol development. Research in the Shames Lab is supported by a Developmental Research Project Award from NIH NIGMS Kansas-INBRE (P20 GM103418) and start-up funds from Kansas State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie R. Shames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shames, S.R. (2019). Screening Targeted Legionella pneumophila Mutant Libraries In Vivo Using INSeq. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics