Skip to main content

Scar-Free Genome Editing in Legionella pneumophila

  • Protocol
  • First Online:
Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Studying bacterial physiology and pathogenesis often requires isolation of targeted mutants. From the early days of bacterial genetics, many genetic tools have been developed to achieve this goal in a lot of bacteria species, and a major key is to be able to manipulate the targeted genome region with a minimum impact on the rest of the genome. Here, we described a two-step protocol relevant in Legionella pneumophila. This efficient two-step protocol uses the natural transformability of L. pneumophila and linear DNA fragments as substrates for recombination without the necessity of intermediate hosts to amplify targeted DNA. Based on a suicide cassette strategy, this genetic toolbox enables to generate clean scar-free deletions, single-nucleotide mutation, transcriptional or translational fusions, as well as insertion at any chosen place in L. pneumophila chromosome, therefore enabling multiple mutations with no need of multiple selection markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryan A, Harada K, Swanson MS (2011) Efficient generation of unmarked deletions in Legionella pneumophila. Appl Environ Microbiol 77:2545–2548

    Article  CAS  Google Scholar 

  2. Khetrapal V, Mehershahi K, Rafee S, Chen SY, Lim CL, Chen SL (2015) A set of powerful negative selection systems for unmodified Enterobacteriaceae. Nucleic Acids Res 43(13):e83

    Article  Google Scholar 

  3. Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP (2006) mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34(9):e71

    Article  Google Scholar 

  4. Choi KR, Lee SY (2016) CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol Adv 34:1180–1209

    Article  CAS  Google Scholar 

  5. Stout E, Klaenhammer T, Barrangou R (2017) CRISPR-Cas technologies and applications in food bacteria. In: Doyle MP, Klaenhammer TR (eds) Annual review of food science and technology, vol 8. Annu Rev, Palo Alto, pp 413–437

    Google Scholar 

  6. So Y, Park SY, Park EH, Park SH, Kim EJ, Pan JG, Choi SK (2017) A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front Microbiol 8:1167

    Article  Google Scholar 

  7. Pyne ME, Bruder MR, Moo-Young M, Chung DA, Chou CP (2016) Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep 6:25666

    Article  CAS  Google Scholar 

  8. Selle K, Barrangou R (2015) Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23:225–232

    Article  CAS  Google Scholar 

  9. Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC (2017) CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 83:e00947–e00917

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Cobb RE, Zhao H (2016) High-efficiency genome editing of Streptomyces Species by an engineered CRISPR/Cas system. In: Oconnor SE (ed) Synthetic biology and metabolic engineering in plants and microbes, Pt a: metabolism in microbes, vol 575. Elsevier Academic Press Inc, San Diego, pp 271–284

    Google Scholar 

  11. Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ (2017) Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem 28:957–967

    Article  CAS  Google Scholar 

  12. Ginevra C, Jacotin N, Diancourt L, Guigon G, Arquilliere R, Meugnier H, Descours G, Vandenesch F, Etienne J, Lina G, Caro V, Jarraud S (2012) Legionella pneumophila Sequence Type 1/Paris pulsotype subtyping by spoligotyping. J Clin Microbiol 50:696–701

    Article  CAS  Google Scholar 

  13. Stone BJ, Abu Kwaik Y (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Attaiech L, Boughammoura A, Brochier-Armanet C, Allatif O, Peillard-Fiorente F, Edwards RA, Omar AR, MacMillan AM, Glover M, Charpentier X (2016) Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc of the Natl Acad Sci USA 113:8813–8818

    Article  CAS  Google Scholar 

  15. Massip C, Descours G, Ginevra C, Doublet P, Jarraud S, Gilbert C (2017) Macrolide resistance in Legionella pneumophila: the role of LpeAB efflux pump. J Antimicrob Chemother 72:1327–1333

    CAS  PubMed  Google Scholar 

  16. Erental A, Sharon I, Engelberg-Kulka H (2012) Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10:e1001281

    Article  CAS  Google Scholar 

  17. Simanshu DK, Yamaguchi Y, Park JH, Inouye M, Patel DJ (2013) Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol Cell 52:447–458

    Article  CAS  Google Scholar 

  18. Hanahan D (1985) Techniques for transformation of E. Coli. In: Glover DM (ed) DNA cloning: a practical approach. IRL Press, Oxford, pp 109–135

    Google Scholar 

  19. Cazalet C, Rusniok C, Bruggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarraud S, Bouchier C, Vandenesch F, Kunst F, Etienne J, Glaser P, Buchrieser C (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS (Centre National de la Recherche Scientifique, UMR5308), INSERM (Institut National de la Recherche Medicale; U1111), and University Claude Bernard Lyon1. This work was performed within the framework of the LABEX ECOFECT (ANR-11-LABX-0042) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bailo, N., Kanaan, H., Kay, E., Charpentier, X., Doublet, P., Gilbert, C. (2019). Scar-Free Genome Editing in Legionella pneumophila. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics