Skip to main content

Migration of Acanthamoeba castellanii Through Legionella Biofilms

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

The amoeba-resistant bacterium Legionella pneumophila infects humans through aerosols and thereby can cause a life-threatening pneumonia termed Legionnaires’ disease. In the environment L. pneumophila forms and colonizes biofilms, which usually comprise complex multispecies communities. In these biofilms L. pneumophila persists and replicates intracellularly in protozoa, such as the amoeba Acanthamoeba castellanii. The interactions between sessile L. pneumophila in biofilms and their natural protozoan hosts are not understood on a molecular level. Here, we describe a method to visualize by confocal microscopy the formation and architecture of mono-species L. pneumophila biofilms. Furthermore, we describe and quantify the migration or “grazing” of A. castellanii in the biofilm. This allows investigating on a molecular and cellular level L. pneumophila biofilm formation and Legionella-amoeba interactions within biofilms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

ACES:

N-(2-acetamido)-2-aminoethanesulfonic acid

AYE:

ACES yeast extract

Cam:

Chloramphenicol

CLSM:

Confocal laser scanning microscope

CYE:

Charcoal yeast extract

GFP:

Green fluorescent protein

OD600:

Optical density at 600 nm

PYG:

Peptone yeast extract glucose

References

  1. Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3:286–296

    Article  CAS  PubMed  Google Scholar 

  3. Murga R, Forster TS, Brown E, Pruckler JM et al (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126

    Article  CAS  PubMed  Google Scholar 

  4. Taylor M, Ross K, Bentham R (2009) Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 58:538–547

    Article  PubMed  Google Scholar 

  5. Kwon S, Moon E, Kim TS, Hong S et al (2011) Pyrosequencing demonstrated complex microbial communities in a membrane filtration system for a drinking water treatment plant. Microbes Environ 26:149–155

    Article  PubMed  Google Scholar 

  6. Stewart CR, Muthye V, Cianciotto NP (2012) Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS One 7:e50560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Kooij D, Bakker GL, Italiaander R, Veenendaal HR et al (2017) Biofilm composition and threshold concentration for growth of Legionella pneumophila on surfaces exposed to flowing warm tap water without disinfectant. Appl Environ Microbiol 83:e02737–e02716

    PubMed  PubMed Central  Google Scholar 

  8. Rowbotham TJ (1981) Pontiac fever, amoebae, and legionellae. Lancet 1:40–41

    Article  CAS  PubMed  Google Scholar 

  9. Hilbi H, Weber SS, Ragaz C, Nyfeler Y et al (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9:563–575

    Article  CAS  PubMed  Google Scholar 

  10. Kuiper MW, Wullings BA, Akkermans AD, Beumer RR et al (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valster RM, Wullings BA, van der Kooij D (2010) Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test. Appl Environ Microbiol 76:7144–7153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas JM, Thomas T, Stuetz RM, Ashbolt NJ (2014) Your garden hose: a potential health risk due to Legionella spp. growth facilitated by free-living amoebae. Environ Sci Technol 48:10456–10464

    Article  CAS  PubMed  Google Scholar 

  13. Bigot R, Bertaux J, Frere J, Berjeaud JM (2013) Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella. PLoS One 8:e77875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piao Z, Sze CC, Barysheva O, Iida K et al (2006) Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 72:1613–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koubar M, Rodier MH, Frere J (2013) Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr Microbiol 66:437–442

    Article  CAS  PubMed  Google Scholar 

  16. Portier E, Bertaux J, Labanowski J, Héchard Y (2016) Iron availability modulates the persistence of Legionella pneumophila in complex biofilms. Microbes Environ 31:387–394

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu Z, Lin YE, Stout JE, Hwang CC et al (2006) Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing system. J Appl Microbiol 101:437–442

    Article  CAS  PubMed  Google Scholar 

  18. Oder M, Fink R, Bohinc K, Torkar KG (2017) The influence of shear stress on the adhesion capacity of Legionella pneumophila. Arh Hig Rada Toksikol 68:109–115

    Article  PubMed  Google Scholar 

  19. Rogers J, Dowsett AB, Dennis PJ, Lee JV et al (1994) Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60:1842–1851

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moritz MM, Flemming HC, Wingender J (2010) Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health 213:190–197

    Article  CAS  PubMed  Google Scholar 

  21. Mallegol J, Duncan C, Prashar A, So J et al (2012) Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PLoS One 7:e46462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lucas CE, Brown E, Fields BS (2006) Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology 152:3569–3573

    Article  CAS  PubMed  Google Scholar 

  23. De Buck E, Maes L, Meyen E, Van Mellaert L et al (2005) Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Biophys Res Commun 331:1413–1420

    Article  PubMed  Google Scholar 

  24. Mampel J, Spirig T, Weber SS, Haagensen JAJ et al (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlson HK, Vance RE, Marletta MA (2010) H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol Microbiol 77:930–942

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pécastaings S, Allombert J, Lajoie B, Doublet P et al (2016) New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling. Biofouling 32:935–948

    Article  PubMed  Google Scholar 

  27. Segal G (2013) The Legionella pneumophila two-component regulatory systems that participate in the regulation of Icm/Dot effectors. Curr Top Microbiol Immunol 376:35–52

    PubMed  Google Scholar 

  28. Hochstrasser R, Hilbi H (2017) Intra-species and inter-kingdom signaling of Legionella pneumophila. Front Microbiol 8:79

    Article  PubMed  PubMed Central  Google Scholar 

  29. Personnic N, Striednig B, Hilbi H (2017) Legionella quorum sensing and its role in pathogen-host interactions. Curr Opin Microbiol 41:29–35

    Article  PubMed  Google Scholar 

  30. Hindré T, Brüggemann H, Buchrieser C, Héchard Y (2008) Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154:30–41

    Article  PubMed  Google Scholar 

  31. Pécastaings S, Berge M, Dubourg KM, Roques C (2010) Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. Biofouling 26:809–819

    Article  PubMed  Google Scholar 

  32. Sadosky AB, Wiater LA, Shuman HA (1993) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61:5361–5373

    Google Scholar 

  33. Tiaden A, Spirig T, Weber SS, Brüggemann H et al (2007) The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol 9:2903–2920

    Article  CAS  PubMed  Google Scholar 

  34. Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331

    Article  CAS  PubMed  Google Scholar 

  35. Feeley JC, Gibson RJ, Gorman GW, Langford NC et al (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moffat JF, Tompkins LS (1992) A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun 60:296–301

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Zürich (“Forschungskredit Candoc”; K-42226-01-01) and the Swiss National Science Foundation (SNF; 31003A_153200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Hilbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hochstrasser, R., Hilbi, H. (2019). Migration of Acanthamoeba castellanii Through Legionella Biofilms. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics