Skip to main content

Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry

  • Protocol
  • First Online:
Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Classical proteomic techniques are perfectly suited to reflect changes in the metabolism by detection of changed protein synthesis rates and protein abundances in a global protein-centered analysis. Although the proteome of microbes is considered as rather low complex, usually the subcellular fractionation of proteins leads to higher proteome coverage which might be important for the proteome quantification. Additionally, such fractionation provides the possibility to detect changes in the protein localization as well as the protein abundance in single sub-proteomes. Here, a workflow for subcellular fractionation of Legionella pneumophila into cytosolic, periplasmic, membrane, and extracellular proteins for global proteome analyses is provided. The methods included in this workflow can be used to analyze the adaptation of L. pneumophila to different environmental and nutritional situations during infection or during different life cycle stages including planktonic or biofilm phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  CAS  Google Scholar 

  2. Becher D, Hempel K, Sievers S et al (2009) A proteomic view of an important human pathogen—towards the quantification of the entire Staphylococcus aureus proteome. PLoS One 4:e8176

    Article  Google Scholar 

  3. Otto A, Bernhardt J, Meyer H et al (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137

    Article  Google Scholar 

  4. Yu NY, Wagner JR, Laird MR et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinforma Oxf Engl 26:1608–1615

    Article  CAS  Google Scholar 

  5. Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30(Suppl 1):S174–S180

    Article  Google Scholar 

  6. Hahne H, Mäder U, Otto A et al (2010) A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 192:870–882

    Article  CAS  Google Scholar 

  7. Wolff S, Hahne H, Hecker M, Becher D (2008) Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Mol Cell Proteomics MCP 7:1460–1468

    Article  CAS  Google Scholar 

  8. Aurass P, Gerlach T, Becher D et al (2016) Life stage-specific proteomes of Legionella pneumophila reveal a highly differential abundance of virulence-associated Dot/Icm effectors. Mol Cell Proteomics MCP 15:177–200

    Article  CAS  Google Scholar 

  9. Han M-J, Yun H, Lee JW et al (2011) Genome-wide identification of the subcellular localization of the Escherichia coli B proteome using experimental and computational methods. Proteomics 11:1213–1227

    Article  CAS  Google Scholar 

  10. Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692

    CAS  PubMed  Google Scholar 

  11. Nandakumar MP, Cheung A, Marten MR (2006) Proteomic analysis of extracellular proteins from Escherichia coli W3110. J Proteome Res 5:1155–1161

    Article  CAS  Google Scholar 

  12. Bonn F, Bartel J, Büttner K et al (2014) Picking vanished proteins from the void: how to collect and ship/share extremely dilute proteins in a reproducible and highly efficient manner. Anal Chem 86:7421–7427

    Article  CAS  Google Scholar 

  13. Otto A, Maaß S, Bonn F et al (2017) An easy and fast protocol for affinity bead-based protein enrichment and storage of proteome samples. In: Shukla AK (ed) Methods in enzymology. Academic Press, Cambridge, MA, pp 1–13

    Google Scholar 

  14. Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4:325–331

    Article  CAS  Google Scholar 

  15. Price CE, Otto A, Fusetti F et al (2010) Differential effect of YidC depletion on the membrane proteome of Escherichia coli under aerobic and anaerobic growth conditions. Proteomics 10:3235–3247

    Article  CAS  Google Scholar 

  16. Foster TJ, McDevitt D (1994) Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol Lett 118:199–205

    Article  CAS  Google Scholar 

  17. Hempel K, Pané-Farré J, Otto A et al (2010) Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation approach. J Proteome Res 9:1579–1590

    Article  CAS  Google Scholar 

  18. Dreisbach A, Hempel K, Buist G et al (2010) Profiling the surfacome of Staphylococcus aureus. Proteomics 10:3082–3096

    Article  CAS  Google Scholar 

  19. Hempel K, Herbst F-A, Moche M et al (2011) Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions. J Proteome Res 10:1657–1666

    Article  CAS  Google Scholar 

  20. Pribyl T, Moche M, Dreisbach A et al (2014) Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae. J Proteome Res 13:650–667

    Article  CAS  Google Scholar 

  21. Moche M, Schlueter R, Bernhardt J et al (2015) Time-resolved analysis of cytosolic and surface associated proteins of Staphylococcus aureus HG001 under planktonic and biofilm conditions. J Proteome Res 14:3804–3822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dörte Becher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maaß, S., Moog, G., Becher, D. (2019). Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics