Skip to main content
Book cover

Legionella pp 333–346Cite as

The Galleria mellonella Infection Model for Investigating the Molecular Mechanisms of Legionella Virulence

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Legionella species evolved virulence factors to exploit protozoa as replicative niches in the environment. Cell culture infection models demonstrated that many of these factors also enable the bacteria to thrive in human macrophages; however, these models do not recapitulate the complex interactions between macrophages, lung epithelial, and additional immune cells, which are crucial to control bacterial infections. Thus, suitable infection models are required to understand which bacterial factors are important to trigger disease. Guinea pigs and, most frequently, mice have been successfully used as mammalian model hosts; however, ethical and economic considerations impede their use in high-throughput screening studies of Legionella isolates or small molecule inhibitors.

Here, we describe the larvae of the lepidopteran Galleria mellonella as insect model of Legionella pathogenesis. Larvae can be obtained from commercial suppliers in large numbers, maintained without the need of specialized equipment, and infected by injection. Although lacking the complexity of a mammalian immune system, the larvae mount humoral and cellular immune responses to infection. L. pneumophila strain 130b and other prototype isolates withstand these responses and use the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) type IV secretion system (T4SS ) to inject effectors enabling survival and replication in hemocytes, insect phagocytes, ultimately leading to the death of the larvae. Differences in virulence between L. pneumophila isolates or gene deletion mutants can be analyzed using indicators of larval health and immune induction, such as pigmentation, mobility, histopathology, and survival. Bacterial replication can be measured by plating hemolymph or by immunofluorescence microscopy of isolated circulating hemocytes from infected larvae. Combined, these straightforward experimental readouts make G. mellonella larvae a versatile model host to rapidly assess the virulence of different Legionella isolates and investigate the role of specific virulence factors in overcoming innate host defense mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183. https://doi.org/10.1136/jcp.33.12.1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19. https://doi.org/10.1111/j.1365-2958.1993.tb01092.x

    Article  CAS  PubMed  Google Scholar 

  3. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674. https://doi.org/10.1073/pnas.95.4.1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. So EC, Mattheis C, Tate EW et al (2015) Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 635:617–635. https://doi.org/10.1139/cjm-2015-0166

    Article  CAS  Google Scholar 

  5. Horwitz MA, Silverstein SC (1980) J Clin Invest. 66(3):441–50. https://doi.org/10.1172/JCI109874

    Article  CAS  PubMed Central  Google Scholar 

  6. Qiu J, Luo ZQ (2017) Legionella and Coxiella effectors: Strength in diversity and activity. Nat Rev Microbiol 15:591–605

    Article  CAS  PubMed  Google Scholar 

  7. Baskerville A, Fitzgeorge RB, Broster M, Hambleton P (1983) Histopathology of experimental Legionnaires’ disease in guinea pigs, rhesus monkeys and marmosets. J Pathol 139:349–362. https://doi.org/10.1002/path.1711390310

    Article  CAS  PubMed  Google Scholar 

  8. Davis GS, Winn WC, Gump DW et al (1983) Legionnaires’ pneumonia in guinea pigs and rats produced by aerosol exposure. Chest 83:15S–16S

    Article  CAS  PubMed  Google Scholar 

  9. Brown AS, Van Driel IR, Hartland EL (2013) Mouse models of Legionnaires’ disease. Curr Top Microbiol Immunol 376:271–291. https://doi.org/10.1007/82-2013-349

    Article  PubMed  Google Scholar 

  10. Tsakas S, Marmaras V (2010) Insect immunity and its signalling: an overview. Isj 7:228–238

    Google Scholar 

  11. Myllymaki H, Valanne S, Ramet M (2014) The Drosophila Imd signaling pathway. J Immunol 192:3455–3462. https://doi.org/10.4049/jimmunol.1303309

    Article  CAS  PubMed  Google Scholar 

  12. Valanne S, Wang J-H, Ramet M (2011) The Drosophila toll signaling pathway. J Immunol 186:649–656. https://doi.org/10.4049/jimmunol.1002302

    Article  CAS  PubMed  Google Scholar 

  13. Kubori T, Shinzawa N, Kanuka H, Nagai H (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6:1–8. https://doi.org/10.1371/journal.ppat.1001216

    Article  CAS  Google Scholar 

  14. Kwadha CA, Ong’Amo GO, Ndegwa PN et al (2017) The biology and control of the greater wax moth, Galleria mellonella. Insects 8:E61

    Article  PubMed  Google Scholar 

  15. Tsai CJ-Y, Loh JMS, Proft T (2016) Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7:214–229. https://doi.org/10.1080/21505594.2015.1135289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogel H, Altincicek B, Glöckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune- gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12:308. https://doi.org/10.1186/1471-2164-12-308

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown SE, Howard A, Kasprzak AB et al (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 39:792–800. https://doi.org/10.1016/j.ibmb.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  18. Wojda I (2017) Immunity of the greater wax moth Galleria mellonella. Insect Sci 24:342–357. https://doi.org/10.1111/1744-7917.12325

    Article  CAS  PubMed  Google Scholar 

  19. González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1–16

    Article  Google Scholar 

  20. Lange A, Beier S, Huson DH et al (2018) Genome sequence of Galleria mellonella (Greater Wax Moth). Genome Announc 6:e01220–e01217. https://doi.org/10.1128/genomeA.01220-17

    Article  PubMed  PubMed Central  Google Scholar 

  21. Harding CR, Schroeder GN, Reynolds S et al (2012) Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 80:2780–2790. https://doi.org/10.1128/IAI.00510-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aurass P, Schlegel M, Metwally O et al (2013) The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 288:11080–11092. https://doi.org/10.1074/jbc.M112.426049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harding CR, Stoneham CA, Schuelein R et al (2013) The Dot/Icm effector SdhA is necessary for virulence of Legionella pneumophila in Galleria mellonella and A/J Mice. Infect Immun 81:2598–2605. https://doi.org/10.1128/IAI.00296-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McAdam PR, Vander Broek CW, Lindsay D et al (2014) Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires’ disease outbreak. Genome Biol 15:504. https://doi.org/10.1186/s13059-014-0504-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sousa PS, Silva IN, Moreira LM et al (2018) Differences in virulence between Legionella pneumophila isolates from human and non-human sources determined in Galleria mellonella infection model. Front Cell Infect Microbiol 8:97. https://doi.org/10.3389/fcimb.2018.00097

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dolezal P, Aili M, Tong J et al (2012) Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 8:e1002459. https://doi.org/10.1371/journal.ppat.1002459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suter TM, Viswanathan VK, Cianciotto NP (1997) Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila. Antimicrob Agents Chemother 41:1385–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cymborowski B (2000) Temperature-dependent regulatory mechanism of larval development of the wax moth (Galleria mellonella). Acta Biochim Pol 47:215–221

    CAS  PubMed  Google Scholar 

  29. Harding CR, Schroeder GN, Collins JW, Frankel G (2013) Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp 81:e50964. https://doi.org/10.3791/50964

    Article  CAS  Google Scholar 

  30. Harding CR, Mattheis C, Mousnier AA et al (2013) LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun 81:4261–4270. https://doi.org/10.1128/IAI.01054_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bergin D, Brennan M, Kavanagh K (2003) Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect 5:1389–1395. https://doi.org/10.1016/j.micinf.2003.09.019

    Article  PubMed  Google Scholar 

  32. Feeley JC, Gibson RJ, Gorman GW et al (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Isaac DT, Laguna RK, Valtz N, Isberg RR (2015) MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proc Natl Acad Sci U S A 112:E5208–E5217. https://doi.org/10.1073/pnas.1511389112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wojda I (2017) Temperature stress and insect immunity. J Therm Biol 68:96–103

    Article  CAS  PubMed  Google Scholar 

  35. Wojda I, Jakubowicz T (2007) Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae. J Insect Physiol 53:1134–1144. https://doi.org/10.1016/j.jinsphys.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  36. Jorjão AL, Oliveira LD, Scorzoni L et al (2018) From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence 9:383–389. https://doi.org/10.1080/21505594.2017.1397871

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kangassalo K, Valtonen TM, Roff D et al (2015) Intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana, in the greater wax moth, Galleria mellonella. J Evol Biol 28:1453–1464. https://doi.org/10.1111/jeb.12666

    Article  CAS  PubMed  Google Scholar 

  38. Boguś MI, Wiśniewski JR, Cymborowski B (1987) Effect of lighting conditions on endocrine events in Galleria mellonella. J Insect Physiol 33:355–362. https://doi.org/10.1016/0022-1910(87)90124-7

    Article  Google Scholar 

  39. Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research and manuscript were enabled by a Medical Research Council UK grant (G1001729 – ID 98065) for GF and GNS, as well as additional institutional funding for GNS from Queen’s University Belfast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar N. Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frankel, G., Schroeder, G.N. (2019). The Galleria mellonella Infection Model for Investigating the Molecular Mechanisms of Legionella Virulence. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics