Skip to main content
Book cover

Legionella pp 249–265Cite as

In Situ Imaging and Structure Determination of Bacterial Toxin Delivery Systems Using Electron Cryotomography

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Determining the three-dimensional structure of biomacromolecules at high resolution in their native cellular environment is a major challenge for structural biology. Toward this end, electron cryotomography (ECT) allows large bio-macromolecular assemblies to be imaged directly in their hydrated physiological milieu to ~4 nm resolution. Combining ECT with other techniques like fluorescent imaging, immunogold labeling, and genetic manipulation has allowed the in situ investigation of complex biological processes at macromolecular resolution. Furthermore, the advent of cryogenic focused ion beam (FIB) milling has extended the domain of ECT to include regions even deep within thick eukaryotic cells. Anticipating two audiences (scientists who just want to understand the potential and general workflow involved and scientists who are learning how to do the work themselves), here we present both a broad overview of this kind of work and a step-by-step example protocol for ECT and subtomogram averaging using the Legionella pneumophila Dot/Icm type IV secretion system (T4SS) as a case study. While the general workflow is presented in step-by-step detail, we refer to online tutorials, user’s manuals, and other training materials for the essential background understanding needed to perform each step.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225

    Article  CAS  Google Scholar 

  2. Robinson CV, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450:973–982

    Article  CAS  Google Scholar 

  3. Sali A, Kuriyan J (1999) Challenges at the frontiers of structural biology. Trends Cell Biol 9:M20–M24

    Article  CAS  Google Scholar 

  4. Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25:624–631

    Article  CAS  Google Scholar 

  5. Curry S (2015) Structural biology: a century-long journey into an unseen world. Interdiscip Sci Rev ISR 40:308–328

    Article  Google Scholar 

  6. Selmer M et al (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  CAS  Google Scholar 

  7. Wimberly BT et al (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  CAS  Google Scholar 

  8. Groll M et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  CAS  Google Scholar 

  9. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  Google Scholar 

  10. Bui KH et al (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155:1233–1243

    Article  CAS  Google Scholar 

  11. Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331:1159–1165

    Article  CAS  Google Scholar 

  12. Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84

    Article  CAS  Google Scholar 

  13. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186

    Article  CAS  Google Scholar 

  14. Chang Y-W et al (2016) Architecture of the type IVa pilus machine. Science 351:aad2001

    Article  Google Scholar 

  15. Hu B, Lara-Tejero M, Kong Q, Galán JE, Liu J (2017) In situ molecular architecture of the salmonella type III secretion machine. Cell 168:1065–1074.e10

    Article  CAS  Google Scholar 

  16. Beck M, Lucić V, Förster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449:611–615

    Article  CAS  Google Scholar 

  17. Briggs JAG (2013) Structural biology in situ—the potential of subtomogram averaging. Curr Opin Struct Biol 23:261–267

    Article  CAS  Google Scholar 

  18. Oikonomou CM, Jensen GJ (2017) A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 15:128

    Article  CAS  Google Scholar 

  19. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  CAS  Google Scholar 

  20. Hagen WJH, Wan W, Briggs JAG (2017) Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J Struct Biol 197:191–198

    Article  Google Scholar 

  21. Grünewald K et al (2003) Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398

    Article  Google Scholar 

  22. Förster F, Medalia O, Zauberman N, Baumeister W, Fass D (2005) Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci U S A 102:4729–4734

    Article  Google Scholar 

  23. Murphy GE, Leadbetter JR, Jensen GJ (2006) In situ structure of the complete Treponema primitia flagellar motor. Nature 442:1062–1064

    Article  CAS  Google Scholar 

  24. Ghosal D, Chang Y-W, Jeong KC, Vogel JP, Jensen GJ (2017) In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep 18:726–732

    Article  CAS  Google Scholar 

  25. Chang YW, Shaffer CL, Rettberg LA, Ghosal D., Jensen GJ (2017) Structures of the type IV secretion system. Doi:https://doi.org/10.1101/195685

  26. Chang Y, Rettberg LA, Ortega DR, Jensen GJ (2017) In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep 18:1090–1099

    Article  CAS  Google Scholar 

  27. Chang Y-W et al (2017) Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat Microbiol 2:16269

    Article  CAS  Google Scholar 

  28. Chang Y-W et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11:737–739

    Article  CAS  Google Scholar 

  29. Kukulski W et al (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119

    Article  CAS  Google Scholar 

  30. Danev R, Buijsse B, Khoshouei M, Plitzko JM, Baumeister W (2014) Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci U S A 111:15635–15640

    Article  CAS  Google Scholar 

  31. Campbell MG et al (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Struct. Lond. Engl 1993(20):1823–1828

    Google Scholar 

  32. Kühlbrandt W (2014) Biochemistry. The resolution revolution. Science 343:1443–1444

    Article  Google Scholar 

  33. McMullan G, Faruqi AR, Clare D, Henderson R (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163

    Article  CAS  Google Scholar 

  34. Jeong KC, Ghosal D, Chang Y-W, Jensen GJ, Vogel JP (2017) Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A 114:8077–8082

    Article  CAS  Google Scholar 

  35. Chen S et al (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981

    Article  CAS  Google Scholar 

  36. Kudryashev M et al (2013) In situ structural analysis of the Yersinia enterocolitica injectisome. elife 2:e00792

    Article  Google Scholar 

  37. Nans A, Kudryashev M, Saibil HR, Hayward RD (2015) Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun 6:10114

    Article  CAS  Google Scholar 

  38. Böck D et al (2017) In situ architecture, function, and evolution of a contractile injection system. Science 357:713–717

    Article  Google Scholar 

  39. Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G (2000) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6:1461–1472

    Article  CAS  Google Scholar 

  40. Chandran V et al (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015

    Article  CAS  Google Scholar 

  41. Gendrin C et al (2012) Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathog 8:e1002637

    Article  CAS  Google Scholar 

  42. Zoued A et al (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63

    Article  CAS  Google Scholar 

  43. Iancu CV et al (2006) Electron cryotomography sample preparation using the Vitrobot. Nat Protoc 1:2813–2819

    Article  CAS  Google Scholar 

  44. Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107–1109

    Article  CAS  Google Scholar 

  45. Tivol WF, Briegel A, Jensen GJ (2008) An improved cryogen for plunge freezing. Microsc Microanal 14:375–379

    Article  CAS  Google Scholar 

  46. Suloway C et al (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60

    Article  CAS  Google Scholar 

  47. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  Google Scholar 

  48. Zheng SQ et al (2007) UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J Struct Biol 157:138–147

    Article  CAS  Google Scholar 

  49. Zheng SQ et al (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332

    Article  CAS  Google Scholar 

  50. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  Google Scholar 

  51. Mastronarde DN (2008) Correction for non-perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J Microsc 230:212–217

    Article  CAS  Google Scholar 

  52. Agulleiro J-I, Fernandez J-J (2015) Tomo3D 2.0—exploitation of advanced vector extensions (AVX) for 3D reconstruction. J Struct Biol 189:147–152

    Article  Google Scholar 

  53. Nicastro D et al (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948

    Article  CAS  Google Scholar 

  54. Hrabe T et al (2012) PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J Struct Biol 178:177–188

    Article  CAS  Google Scholar 

  55. Bharat TAM, Scheres SHW (2016) Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 11:2054–2065

    Article  CAS  Google Scholar 

  56. Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H (2012) Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol 178:139–151

    Article  Google Scholar 

  57. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  58. Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Songye Chen (Caltech). This work is supported by NIH grant R01482AI127401 to G.J.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant J. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghosal, D., Kaplan, M., Chang, YW., Jensen, G.J. (2019). In Situ Imaging and Structure Determination of Bacterial Toxin Delivery Systems Using Electron Cryotomography. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics