Skip to main content

Reference-Based Identification of Long Noncoding RNAs in Plants with Strand-Specific RNA-Sequencing Data

  • Protocol
Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Long noncoding RNAs (lncRNAs) have been shown to play important roles in various organisms, including plant species. Several tools and pipelines have emerged for lncRNA identification, including reference-based transcriptome assembly pipelines and various coding potential calculating tools. In this protocol, we have integrated some of the most updated computational tools and described the procedures step-by-step for identifying lncRNAs from plant strand-specific RNA-sequencing datasets. We will start from clean RNA-sequencing reads, followed by reference-based transcriptome assembly, filtering of known genes, and lncRNA prediction. At the end point, users will obtain a set of predicted lncRNAs for downstream use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bazin J, Bailey-Serres J (2015) Emerging roles of long non-coding RNA in root developmental plasticity and regulation of phosphate homeostasis. Front Plant Sci 6:400

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216

    Article  CAS  PubMed  Google Scholar 

  4. Zhao J, He Q, Chen G et al (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7:1213

    PubMed  PubMed Central  Google Scholar 

  5. Liu J, Jung C, Xu J et al (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24(11):4333–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang H, Chung PJ, Liu J et al (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24(3):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang T-Z, Liu M, Zhao M-G et al (2015) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Huang H, Zhang D et al (2017) A review on recent computational methods for predicting noncoding RNAs. Biomed Res Int 2017:1–14

    CAS  Google Scholar 

  9. Johnsson P, Lipovich L, Grandér D et al (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071

    Article  CAS  PubMed  Google Scholar 

  10. Han S, Liang Y, Li Y et al (2016) Long noncoding RNA identification: comparing machine learning based tools for long noncoding transcripts discrimination. Biomed Res Int 2016:1–14

    Google Scholar 

  11. Pertea M, Kim D, Pertea GM et al (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11(9):1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wucher V, Legeai F, Hédan B et al (2017) FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res 45(8):gkw1306

    Article  Google Scholar 

  13. Parkhomchuk D, Borodina T, Amstislavskiy V et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolser DM, Staines DM, Perry E et al (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. Methods Mol Biol 1374:115–140

    Article  Google Scholar 

  19. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(Web Server issue):W686–W689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalvari I, Argasinska J, Quinones-Olvera N et al (2018) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res 46(D1):D335–D342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Hong Kong Research Grants Council Area of Excellence Scheme (AoE/M-403/16); CUHK VC Discretionary Fund (VCF2014004); National Key Research and Development Program–Key Innovative and Collaborative Science and Technology Scheme for Hong Kong, Macau, and Taiwan (2017YFE0191100); CUHK Direct Grant (3132782); and the Lo Kwee-Seong Biomedical Research Fund to H.-M.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Fung Chan or Hon-Ming Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Lin, X., Ni, M., Xiao, Z., Chan, TF., Lam, HM. (2019). Reference-Based Identification of Long Noncoding RNAs in Plants with Strand-Specific RNA-Sequencing Data. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics