Skip to main content

Identification of Novel lincRNA and Co-Expression Network Analysis Using RNA-Sequencing Data in Plants

  • Protocol
Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Long intergenic noncoding RNA (lincRNA) plays important biological functions in plants. Identification and annotation of lincRNA in plants largely rely on RNA sequencing followed by computational analysis. In this protocol, we describe a multistep computational pipeline for lincRNA identification using RNA-sequencing data. This pipeline can also construct co-expression network that is made of both lincRNA and mRNA genes. The co-expression network generated by this pipeline can be used to provide putative annotation of lincRNAs that have no known biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li S, Yamada M, Han X et al (2016) High resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 39(4):508–522

    Article  CAS  Google Scholar 

  2. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  Google Scholar 

  3. Shuai P, Liang D, Tang S et al (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65(17):4975–4983

    Article  CAS  Google Scholar 

  4. Liu J, Jung C, Xu J et al (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  CAS  Google Scholar 

  5. Shen Y, Zhou Z, Wang Z et al (2014) Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26:996–1008

    Article  CAS  Google Scholar 

  6. Thatcher SR, Danilevskaya ON, Meng X et al (2016) Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiol 170:586–599

    Article  CAS  Google Scholar 

  7. Zhang W, Han Z, Guo Q et al (2014) Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9:e98958

    Article  Google Scholar 

  8. Aghamirzaie D, Batra D, Heath LS et al (2015) Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos. BMC Genomics 16:928

    Article  Google Scholar 

  9. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  10. Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  Google Scholar 

  11. Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  Google Scholar 

  12. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–34

    Article  Google Scholar 

  13. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  14. Leinonen R, Sugawara H, Shumway M (2011) International nucleotide sequence database collaboration. The sequence read archive. Nucleic Acids Res 39:D19–D21

    Article  CAS  Google Scholar 

  15. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  Google Scholar 

  16. Krishnakumar V, Hanlon MR, Contrino S et al (2015) Araport: the Arabidopsis information portal. Nucleic Acids Res 43:D1003–D1009

    Article  CAS  Google Scholar 

  17. Cheng CY, Krishnakumar V, Chan AP et al (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804

    Article  CAS  Google Scholar 

  18. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Virginia Agricultural Experiment Station (Blacksburg) and the National Institute of Food and Agriculture, US Department of Agriculture (Washington, DC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Qi, S., Akter, S., Li, S. (2019). Identification of Novel lincRNA and Co-Expression Network Analysis Using RNA-Sequencing Data in Plants. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics