Skip to main content

miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences

  • Protocol
  • First Online:
Plant MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1932))

Abstract

microRNAs (miRNAs) are short, noncoding regulatory RNAs derived from hairpin precursors (pre-miRNAs). In synergy with experimental approaches, computational approaches have become an invaluable tool for identifying miRNAs at the genome scale. We have recently reported a method called miRLocator, which applies machine learning algorithms to accurately predict the localization of most likely miRNAs within their pre-miRNAs. One major strength of miRLocator is the fact that the machine learning-based miRNA prediction model can be automatically trained using a set of miRNAs of particular interest, with informative features extracted from miRNA-miRNA* duplexes and the optimized ratio between positive and negative samples. Here, we present a detailed protocol for miRLocator that performs the training and prediction processes using a python implementation and web interface. The source codes, web interface, and manual documents are freely available to academic users at https://github.com/cma2015/miRLocator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li S, Castillo-Gonzalez C, Yu B, Zhang X (2017) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670

    Article  CAS  Google Scholar 

  2. Xie F, Jones DC, Wang Q, Sun R, Zhang B (2015) Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnol J 13:355–369

    Article  CAS  Google Scholar 

  3. Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    Article  CAS  Google Scholar 

  4. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  Google Scholar 

  5. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  Google Scholar 

  6. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  Google Scholar 

  7. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  Google Scholar 

  8. Chavez Montes RA, de Fatima Rosas-Cardenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722

    Article  Google Scholar 

  9. Wang ZM, Xue W, Dong CJ, Jin LG, Bian SM, Wang C, Wu XY, Liu JY (2012) A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules. Mol Plant 5:889–900

    Article  CAS  Google Scholar 

  10. Wu Y, Wei B, Liu H, Li T, Rayner S (2011) MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12:107

    Article  CAS  Google Scholar 

  11. Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res 41:7200–7211

    Article  CAS  Google Scholar 

  12. Tav C, Tempel S, Poligny L, Tahi F (2016) miRNAFold: a web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res 44:W181–W184

    Article  CAS  Google Scholar 

  13. Morgado L, Johannes F (2017) Computational tools for plant small RNA detection and categorization. Brief Bioinform. https://doi.org/10.1093/bib/bbx136

  14. Cui H, Zhai J, Ma C (2015) miRLocator: machine learning-based prediction of mature MicroRNAs within plant pre-miRNA sequences. PLoS One 10:e0142753

    Article  Google Scholar 

  15. Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  Google Scholar 

  16. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  Google Scholar 

  17. Szczesniak MW, Makalowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42:D74–D77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Natural Science Foundation of China (31570371), the Youth 1000-Talent Program of China, the Hundred Talents Program of Shaanxi Province of China, the Projects of Youth Technology New Star of Shaanxi Province (2017KJXX-67), and the Fund of Northwest A & F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, T., Ju, L., Zhai, J., Song, Y., Song, J., Ma, C. (2019). miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics