Skip to main content

In Situ Localization of Small RNAs in Plants

  • Protocol
  • First Online:
Plant MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1932))

  • 1777 Accesses

Abstract

Small RNAs have vital roles in numerous aspects of plant biology. Deciphering their precise contributions requires knowledge of a small RNA’s spatiotemporal pattern of accumulation. The in situ hybridization protocol described here takes advantage of locked nucleic acid (LNA) oligonucleotide probes to visualize small RNA expression at the cellular level with high sensitivity and specificity. The procedure is optimized for paraffin-embedded plant tissue sections, is applicable to a wide range of plants and tissues, and can be completed within 2–6 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  Google Scholar 

  2. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  Google Scholar 

  3. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  Google Scholar 

  4. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  Google Scholar 

  5. Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554

    Article  CAS  Google Scholar 

  6. Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    Article  CAS  Google Scholar 

  7. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  Google Scholar 

  8. Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A Protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132

    Article  CAS  Google Scholar 

  9. Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP (2017) Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev Cell 43:265–273

    Article  CAS  Google Scholar 

  10. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  CAS  Google Scholar 

  11. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  Google Scholar 

  12. Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield N, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27:3354–3366

    Article  CAS  Google Scholar 

  13. Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467:415–419

    Article  CAS  Google Scholar 

  14. Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563

    Article  CAS  Google Scholar 

  15. Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  CAS  Google Scholar 

  16. Chuck G, Whipple C, Jackson D, Hake S (2010) The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137:1243–1250

    Article  CAS  Google Scholar 

  17. Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905

    Article  CAS  Google Scholar 

  18. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  Google Scholar 

  19. Jackson D (1991) In situ hybridization in plants. In: Bowles DJ, Gurr SJ, McPherson M (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 163–174

    Google Scholar 

  20. Javelle M, Marco CF, Timmermans M (2011) In situ hybridization for the precise localization of transcripts in plants. J Vis Exp 57:e3328

    Google Scholar 

  21. Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755

    Article  CAS  Google Scholar 

  22. Douglas RN, Wiley D, Sarkar A, Springer N, Timmermans MC, Scanlon MJ (2010) ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451

    Article  CAS  Google Scholar 

  23. Petsch K, Manzotti PS, Tam OH, Meeley R, Hammell M, Consonni G, Timmermans MC (2015) Novel DICER-LIKE1 siRNAs bypass the requirement for DICER-LIKE4 in Maize development. Plant Cell 27:2163–2177

    Article  CAS  Google Scholar 

  24. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3:27–29

    Article  CAS  Google Scholar 

  25. Javelle M, Timmermans MCP (2012) In situ localization of small RNAs in plants by using LNA probes. Nat Protoc 7:533–541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Damianos Skopelitis was supported by an HFSP long-term postdoctoral fellowship (LT000257/2009). Work on small RNA regulation in the Timmermans lab is supported by grants from the National Science Foundation (IOS-1355018), the Deutsche Forschungsgemeinschaft (SFB 1101 project C06), and an Alexander von Humboldt Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja C. P. Timmermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marco, C.F., Skopelitis, D.S., Timmermans, M.C.P. (2019). In Situ Localization of Small RNAs in Plants. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics