Skip to main content

Development of a Pedigreed Sorghum Mutant Library

  • Protocol
  • First Online:
Sorghum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1931))

Abstract

Induced mutagenesis is a powerful approach to generate variations for elucidation of gene function and to create new traits for breeding. Here, we described a procedure to develop a pedigreed mutant library through chemical mutagenesis with ethylmethane sulfonate (EMS) treated seeds in sorghum and discussed its potential to generate new traits for sorghum improvement. Unlike random mutagenesis, a pedigreed mutant library, once properly established, can serve as a powerful resource to isolate and recover mutations of both agronomical and biological importance. With the development of affordable and high-throughput next-generation sequencing technologies, identification of causal mutations from a mutant library with a uniform genetic background becomes increasingly efficient and cost-effective. Fast causal gene discovery from mutant libraries combined with precise genome editing techniques will accelerate incorporation of new traits and revolutionize crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quinby JR, Karper RE (1942) Inheritance of mature plant characters in sorghum. Induced by Radiation J Hered 33:323–327

    Google Scholar 

  2. Gaul H (1964) Mutations in plant breeding. Radiat Bot 4:155–232

    Article  Google Scholar 

  3. Sree Ramulu K (1970) Induced systematic mutations in sorghum. Mutat Res Fundam Mol Mech Mutagen 10:77–80

    Article  Google Scholar 

  4. Sree Ramulu K (1970) Sensitivity and induction of mutations in sorghum. Mutat Res Fundam Mol Mech Mutagen 10:197–206

    Article  Google Scholar 

  5. Sree Ramulu K, Sree Rangasamy SR (1972) An estimation of the number of initials in grain sorghum using mutagenic treatments. Radiat Bot 12:37–43

    Article  Google Scholar 

  6. Quinby JR (1975) The genetics of sorghum improvement. J Hered 66:56–62

    Article  Google Scholar 

  7. Ejeta G, Axtell J (1985) Mutant gene in sorghum causing leaf "reddening" and increased protein concentration in the grain. J Hered 76:301–302

    Article  Google Scholar 

  8. Oria MP, Hamaker BR, Axtell JD, Huang CP (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci U S A 97:5065–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh R, Axtell JD (1973) High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum. Crop Sci 13:535–539

    Article  CAS  Google Scholar 

  10. Porter KS, Anxtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208

    Article  CAS  Google Scholar 

  11. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G et al (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  13. Jiao Y, Burow G, Gladman N, Acosta-Martinez V, Chen J, Burke J et al (2018) Efficient identification of causal mutations through sequencing of bulked f2 from two allelic bloomless mutants. Front Plant Sci 8:2267

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics 2008:362451

    Article  PubMed  PubMed Central  Google Scholar 

  15. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  16. Blomstedt CK, Gleadow RM, O'Donnell N, Naur P, Jensen K, Laursen T et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66

    Article  PubMed  Google Scholar 

  17. Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rizal G, Karki S, Alcasid M, Montecillo F, Acebron K, Larazo N et al (2014) Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci 54:520

    Article  Google Scholar 

  19. Jiao Y, Burke JJ, Chopra R, Burow G, Chen J, Wang B et al (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mace ES, Hunt CH, Jordan DR (2013) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126:1377–1395

    Article  CAS  PubMed  Google Scholar 

  21. Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J et al (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1(6):e1400218

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    Article  CAS  PubMed  Google Scholar 

  23. Xin Z, Gitz D, Burow G, Hayes C, Burke JJ (2015) Registration of two allelic erect leaf mutants of sorghum. J Plant Regist 9:254–257

    Article  Google Scholar 

  24. Xin Z, Burow GB, Burke JJ 2014 Multi-seed mutant of sorghum for increasing grain yield. US Patent US 2014/0068798 Al, 6 Mar 2014

    Google Scholar 

  25. Burow G, Xin Z, Hayes C, Burke J (2014) Characterization of a multiseeded mutant of sorghum for increasing grain yield. Crop Sci 54:2030–2037

    Article  Google Scholar 

  26. Jiao Y, Lee YK, Gladman N, Chopra R, Christensen SA, Regulski M et al (2018) MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat Commun 9:822. https://doi.org/10.1038/s41467-018-03238-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-Central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  28. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  29. Assefa Y, Staggenborg SA (2011) Phenotypic changes in grain sorghum over the last five decades. J Agron Crop Sci 197:249–257

    Article  Google Scholar 

  30. Xin Z, Wang M, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2:10–16

    Article  Google Scholar 

  31. Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47:2211–2227

    Article  CAS  Google Scholar 

  32. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou B, Yue Y, Sun X, Ding Z, Ma W, Zhao M (2017) Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J 5:43–51

    Article  Google Scholar 

  34. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  CAS  PubMed  Google Scholar 

  36. Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W et al (2018) Developing a flexible, high-efficiency agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16(7):1388–1395. https://doi.org/10.1111/pbi.12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burow GB, Klein RR, Franks CD, Klein PE, Schertz KF, Pederson GA et al (2011) Registration of the BTx623/IS3620C recombinant inbred mapping population of sorghum. J Plant Regist 5:141–145

    Article  Google Scholar 

  38. Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S et al (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  PubMed  Google Scholar 

  39. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  CAS  PubMed  Google Scholar 

  40. Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  CAS  PubMed  Google Scholar 

  41. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  43. Peters PJ, Jenks MA, Rich PJ, Axtell JD, Ejeta G (2009) Mutagenesis, selection, and allelic analysis of epicuticular wax mutants in sorghum. Crop Sci 49:1250–1258

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the United Sorghum Checkoff for funding and Lan Liu-Gitz for technical support.

Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanguo Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, J., Zou, G., Xin, Z. (2019). Development of a Pedigreed Sorghum Mutant Library. In: Zhao, ZY., Dahlberg, J. (eds) Sorghum. Methods in Molecular Biology, vol 1931. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9039-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9039-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9038-2

  • Online ISBN: 978-1-4939-9039-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics