Skip to main content

S100A7 in Psoriasis: Immunodetection and Activation by CRISPR technology

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Psoriasis, an inflammatory autoimmune skin disease, is the result of a chronic interaction between hyperproliferative keratinocytes and infiltrating activated immune cells. The mechanisms underlying psoriasis pathogenesis remain largely unknown, although a combination of genetic and environmental factors plays an important role in its development. S100A7 is overexpressed in psoriasis, and there is growing evidence that S100A7 may be involved in the pathogenesis of psoriasis. Since the mechanisms underlying S100A7 regulation and function remain elusive, a better understanding of these mechanisms may be useful to uncover additional treatment approaches for psoriasis. Immunohistology provides invaluable tools for a better understanding of the pathogenetic mechanisms of psoriasis. Here, we describe basic methods for immunofluorescence and immunohistochemistry analysis of S100A7 expression in psoriatic patients as well as in S100A7 CRISPR-activated human keratinocyte cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  CAS  Google Scholar 

  2. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  CAS  Google Scholar 

  3. Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132:887–895

    Article  CAS  Google Scholar 

  4. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13:24–57

    Article  CAS  Google Scholar 

  5. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    Article  CAS  Google Scholar 

  6. Hoffmann HJ, Olsen E, Etzerodt M, Madsen P, Thøgersen HC, Kruse T, Celis JE (1994) Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. J Invest Dermatol 103:370–375

    Article  CAS  Google Scholar 

  7. Di Nuzzo S, Sylva-Steenland RM, Koomen CW, de Rie MA, Das PK, Bos JD, Teunissen MB (2000) Exposure to UVB induces accumulation of LFA-1+ T cells and enhanced expression of the chemokine psoriasin in normal human skin. Photochem Photobiol 72:374–382

    Article  Google Scholar 

  8. Broome AM, Ryan D, Eckert RL (2003) S100 protein subcellular localization during epidermal differentiation and psoriasis. J Histochem Cytochem 51:675–685

    Article  CAS  Google Scholar 

  9. D’Amico F, Skarmoutsou E, Granata M, Trovato C, Rossi GA, Mazzarino MC (2016) S100A7: a rAMPing up AMP molecule in psoriasis. Cytokine Growth Factor Rev 32:97–104

    Article  Google Scholar 

  10. LeĂ³n R, Murray JI, Cragg G, Farnell B, West NR, Pace TC, Watson PH, Bohne C, Boulanger MJ, Hof F (2009) Identification and characterization of binding sites on S100A7, a participant in cancer and inflammation pathways. Biochemistry 48:10591–10600

    Article  Google Scholar 

  11. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN, Gibson SB, Murphy LC, Watson PH (2005) The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res 65:5696–5702

    Article  CAS  Google Scholar 

  12. Webb M, Emberley ED, Lizardo M, Alowami S, Qing G, Alfia'ar A, Snell-Curtis LJ, Niu Y, Civetta A, Myal Y, Shiu R, Murphy LC, Watson PH (2005) Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis. BMC Cancer 5:17

    Article  Google Scholar 

  13. Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by intramural grants from the University of Catania, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio D’Amico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Granata, M., Skarmoutsou, E., Mazzarino, M.C., D’Amico, F. (2019). S100A7 in Psoriasis: Immunodetection and Activation by CRISPR technology. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_45

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics