Skip to main content

Clinical Use of the Calcium-Binding S100B Protein, a Biomarker for Head Injury

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

S100B is a calcium-binding protein most abundant in neuronal tissue. It is expressed in glial cells and Schwann cells and exerts both intra- and extracellular effects. Depending on the concentration, secreted S100B exerts either trophic or toxic effects. Its functions have been extensively studied but are still not fully understood. It can be measured in cerebrospinal fluid and in blood, and increased S100B level in blood can be seen after, e.g., traumatic brain injury, certain neurodegenerative disorders, and malignant melanoma. This chapter provides a short background of protein S100B, commercially available methods of analysis, and its clinical use, especially as a biomarker in minor head injury.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19:739–744

    Article  CAS  Google Scholar 

  2. Isobe T, Okuyama T (1981) The amino-acid sequence of the alpha subunit in bovine brain S-100a protein. Eur J Biochem 116:79–86

    Article  CAS  Google Scholar 

  3. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    Article  CAS  Google Scholar 

  4. Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochim Biophys Acta 1763:1282–1283

    Article  CAS  Google Scholar 

  5. Kizawa K et al (2011) S100 and S100 fused-type protein families in epidermal maturation with special focus on S100A3 in mammalian hair cuticles. Biochimie 93:2038–2047

    Article  CAS  Google Scholar 

  6. Ostendorp T et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878

    Article  CAS  Google Scholar 

  7. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214

    Article  CAS  Google Scholar 

  8. Donato R, Heizmann CW (2010) S100B protein in the nervous system and cardiovascular apparatus in normal and pathological conditions. Cardiovasc Psychiatry Neurol 2010:929712. https://doi.org/10.1155/2010/929712

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harpio R, Einarsson R (2004) S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin Biochem 37:512–518

    Article  CAS  Google Scholar 

  10. Haimoto H, Hosoda S, Kato K (1987) Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Investig 57:489–498

    CAS  PubMed  Google Scholar 

  11. Wiesmann M et al (1998) Plasma S-100b protein concentration in healthy adults is age- and sex-independent. Clin Chem 44:1056–1058

    CAS  PubMed  Google Scholar 

  12. Marchi N et al (2003) Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor Neurol Neurosci 21:109–121

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jonsson H et al (2000) Elimination of S100B and renal function after cardiac surgery. J Cardiothorac Vasc Anesth 14:698–701

    Article  CAS  Google Scholar 

  14. Blomquist S et al (1997) The appearance of S-100 protein in serum during and immediately after cardiopulmonary bypass surgery: a possible marker for cerebral injury. J Cardiothorac Vasc Anesth 11:699–703

    Article  CAS  Google Scholar 

  15. Raabe A et al (2003) Measurements of serum S-100B protein: effects of storage time and temperature on pre-analytical stability. Clin Chem Lab Med 41:700–703

    Article  CAS  Google Scholar 

  16. Hallen M et al (2008) A comparison of two different assays for determining S-100B in serum and urine. Clin Chem Lab Med 46:1025–1029

    Article  CAS  Google Scholar 

  17. Raabe A et al (1998) Jugular venous and arterial concentrations of serum S-100B protein in patients with severe head injury: a pilot study. J Neurol Neurosurg Psychiatry 65:930–932

    Article  CAS  Google Scholar 

  18. Kunihara T et al (2006) Arterio-jugular differences in serum S-100beta proteins in patients receiving selective cerebral perfusion. Surg Today 36:6–11

    Article  CAS  Google Scholar 

  19. Muller K et al (2007) S100B serum level predicts computed tomography findings after minor head injury. J Trauma 62:1452–1456

    Article  CAS  Google Scholar 

  20. Astrand R et al (2011) Reference values for venous and capillary S100B in children. Clin Chim Acta 412:2190–2193

    Article  CAS  Google Scholar 

  21. Ingebrigtsen T, Romner B, Kock-Jensen C (2000) Scandinavian guidelines for initial management of minimal, mild, and moderate head injuries. The Scandinavian Neurotrauma Committee. J Trauma 48:760–766

    Article  CAS  Google Scholar 

  22. af Geijerstam JL, Britton M (2003) Mild head injury - mortality and complication rate: meta-analysis of findings in a systematic literature review. Acta Neurochir 145:843–850 discussion 850

    Article  Google Scholar 

  23. Unden J et al (2005) Serum S100B levels in patients with epidural haematomas. Br J Neurosurg 19:43–45

    Article  CAS  Google Scholar 

  24. Unden J, Romner B (2009) A new objective method for CT triage after minor head injury—serum S100B. Scand J Clin Lab Invest 69:13–17

    Article  CAS  Google Scholar 

  25. Biberthaler P et al (2001) Elevated serum levels of S-100B reflect the extent of brain injury in alcohol intoxicated patients after mild head trauma. Shock 16:97–101

    Article  CAS  Google Scholar 

  26. Biberthaler P et al (2001) Evaluation of S-100b as a specific marker for neuronal damage due to minor head trauma. World J Surg 25:93–97

    Article  CAS  Google Scholar 

  27. Ingebrigtsen T et al (2000) The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj 14:1047–1055

    Article  CAS  Google Scholar 

  28. Mussack T et al (2002) Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. Shock 18:395–400

    Article  Google Scholar 

  29. Poli-de-Figueiredo LF et al (2006) Measurement of S-100B for risk classification of victims sustaining minor head injury—first pilot study in Brazil. Clinics (Sao Paulo) 61:41–46

    Article  Google Scholar 

  30. Unden J, Romner B (2010) Can low serum levels of S100B predict normal CT findings after minor head injury in adults?: an evidence-based review and meta-analysis. J Head Trauma Rehabil 25:228–240

    Article  Google Scholar 

  31. Kleine TO, Benes L, Zofel P (2003) Studies of the brain specificity of S100B and neuron-specific enolase (NSE) in blood serum of acute care patients. Brain Res Bull 61:265–279

    Article  Google Scholar 

  32. Unden J et al (2005) Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma 58:59–61

    Article  Google Scholar 

  33. Anderson RE et al (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 48:1255–1258 discussion 1258–1260

    CAS  PubMed  Google Scholar 

  34. Biberthaler P et al (2000) Influence of alcohol exposure on S-100b serum levels. Acta Neurochir Suppl 76:177–179

    CAS  PubMed  Google Scholar 

  35. Biberthaler P et al (2006) Serum S-100B concentration provides additional information fot the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock 25:446–453

    Article  CAS  Google Scholar 

  36. Zongo D et al (2011) S100-B protein as a screening tool for the early assessment of minor head injury. Ann Emerg Med 59:209–218

    Article  Google Scholar 

  37. Unden J et al (2013) Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med 14:33. https://doi.org/10.1186/1741-7015-11-50

    Article  Google Scholar 

  38. Calcagnile O, Anell A, Unden J (2016) The addition of S100B to guidelines for management of mild head injury is potentially cost saving. BMC Neurol 16:200. https://doi.org/10.1186/s12883-016-0723-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Unden L et al (2015) Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Med 13:292. https://doi.org/10.1186/s12916-015-0533-y

    Article  PubMed  PubMed Central  Google Scholar 

  40. Raabe A, Grolms C, Seifert V (1999) Serum markers of brain damage and outcome prediction in patients after severe head injury. Br J Neurosurg 13:56–59

    Article  CAS  Google Scholar 

  41. Nylen K et al (2006) Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 240:85–91

    Article  CAS  Google Scholar 

  42. da Rocha AB et al (2006) Role of serum S100B as a predictive marker of fatal outcome following isolated severe head injury or multitrauma in males. Clin Chem Lab Med 44:1234–1242

    Article  Google Scholar 

  43. Wiesmann M et al (2010) Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. Acta Neurol Scand 121:178–185

    Article  CAS  Google Scholar 

  44. Vos PE et al (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75:1786–1793

    Article  CAS  Google Scholar 

  45. Raabe A et al (1999) Serum S-100B protein in severe head injury. Neurosurgery 45:477–483

    Article  CAS  Google Scholar 

  46. Woertgen C et al (1999) Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma 47:1126–1130

    Article  CAS  Google Scholar 

  47. Nylen K et al (2008) Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury. Acta Neurochir 150:221–227 discussion 227

    Article  CAS  Google Scholar 

  48. Bohmer AE et al (2011) Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery 68:1624–1631

    Article  Google Scholar 

  49. Dimopoulou I et al (2003) Protein S-100b serum levels in trauma-induced brain death. Neurology 60:947–951

    Article  CAS  Google Scholar 

  50. Rodriguez-Rodriguez A et al (2016) S100B and neuron-specific enolase as mortality predictors in patients with severe traumatic brain injury. Neurol Res 38:130–137

    Article  Google Scholar 

  51. Raabe A et al (2004) S-100B protein as a serum marker of secondary neurological complications in neurocritical care patients. Neurol Res 26:440–445

    Article  Google Scholar 

  52. Unden J et al (2007) Clinical significance of serum S100B levels in neurointensive care. Neurocrit Care 6:94–99

    Article  CAS  Google Scholar 

  53. Thelin EP, Nelson DW, Bellander BM (2014) Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit Care 20:217–229

    Article  CAS  Google Scholar 

  54. Bellander BM et al (2011) Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir 153:90–100

    Article  Google Scholar 

  55. Olivecrona M et al (2009) S-100B and neuron specific enolase are poor outcome predictors in severe traumatic brain injury treated by an intracranial pressure targeted therapy. J Neurol Neurosurg Psychiatry 80:1241–1247

    Article  CAS  Google Scholar 

  56. Pelinka LE et al (2003) Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock 19:195–200

    Article  CAS  Google Scholar 

  57. Bechtel K et al (2009) Relationship of serum S100B levels and intracranial injury in children with closed head trauma. Pediatrics 124:e697–e704

    Article  Google Scholar 

  58. Mondello S et al (2016) Serum concentrations of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein after pediatric traumatic brain injury. Sci Rep 6:28203. https://doi.org/10.1038/srep28203

    Google Scholar 

  59. Papa L et al (2015) In children and youth with mild and moderate traumatic brain injury GFAP out-performs S100beta in detecting traumatic intracranial lesions on CT. J Neurotrauma 33:58–64

    Article  Google Scholar 

  60. Berger RP et al (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103:61–68

    PubMed  Google Scholar 

  61. Castellani C et al (2009) Neuroprotein s-100B—a useful parameter in paediatric patients with mild traumatic brain injury? Acta Paediatr 98:1607–1612

    Article  CAS  Google Scholar 

  62. Castellani C et al (2008) Reference ranges for neuroprotein S-100B: from infants to adolescents. Clin Chem Lab Med 46:1296–1299

    Article  CAS  Google Scholar 

  63. Simon-Pimmel J et al (2017) Reference ranges for serum S100B neuroprotein specific to infants under four months of age. Clin Biochem 50:1056–1060

    Article  CAS  Google Scholar 

  64. Oris C et al (2018) The biomarker S100B and mild traumatic brain injury: a meta-analysis. Pediatrics 141. https://doi.org/10.1542/peds.2018-0037

    Article  Google Scholar 

  65. Petzold A et al (2003) Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci Lett 336:167–170

    Article  CAS  Google Scholar 

  66. Rothermundt M et al (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60:614–632

    Article  CAS  Google Scholar 

  67. Schroeter ML et al (2009) Neuron-specific enolase is unaltered whereas S100B is elevated in serum of patients with schizophrenia—original research and meta-analysis. Psychiatry Res 167:66–72

    Article  CAS  Google Scholar 

  68. Beer C et al (2010) Systemic markers of inflammation are independently associated with S100B concentration: results of an observational study in subjects with acute ischaemic stroke. J Neuroinflammation 7:71. https://doi.org/10.1186/1742-2094-7-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peskind ER et al (2001) Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 39:409–413

    Article  CAS  Google Scholar 

  70. Chaves ML et al (2010) Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 7:6. https://doi.org/10.1186/1742-2094-7-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gruden MA et al (2007) Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta((25-35)) oligomers, S100b and neurotransmitters. J Neuroimmunol 186:181–192

    Article  CAS  Google Scholar 

  72. Mitosek-Szewczyk K et al (2011) Some markers of neuronal damage in cerebrospinal fluid of multiple sclerosis patients in relapse. Folia Neuropathol 49:191–196

    CAS  PubMed  Google Scholar 

  73. Rothermundt M, Ahn JN, Jorgens S (2009) S100B in schizophrenia: an update. Gen Physiol Biophys 28 Spec No Focus:F76–F81

    PubMed  Google Scholar 

  74. Yelmo-Cruz S, Morera-Fumero AL, Abreu-Gonzalez P (2013) S100B and schizophrenia. Psychiatry Clin Neurosci 67:67–75

    Article  CAS  Google Scholar 

  75. Hauschild A et al (1999) S100B protein detection in serum is a significant prognostic factor in metastatic melanoma. Oncology 56:338–344

    Article  CAS  Google Scholar 

  76. Weide B et al (2012) Serum markers lactate dehydrogenase and S100B predict independently disease outcome in melanoma patients with distant metastasis. Br J Cancer 107:422–428

    Article  CAS  Google Scholar 

  77. Hauschild A et al (1999) Prognostic significance of serum S100B detection compared with routine blood parameters in advanced metastatic melanoma patients. Melanoma Res 9:155–161

    Article  CAS  Google Scholar 

  78. Hartman KG et al (2013) The evolution of S100B inhibitors for the treatment of malignant melanoma. Future Med Chem 5:97–109

    Article  CAS  Google Scholar 

  79. Molina R et al (2002) S-100 protein serum levels in patients with benign and malignant diseases: false-positive results related to liver and renal function. Tumour Biol 23:39–44

    Article  CAS  Google Scholar 

  80. Muller K et al (2006) Analysis of protein S-100B in serum: a methodological study. Clin Chem Lab Med 44:1111–1114

    Article  CAS  Google Scholar 

  81. Alber B et al (2005) Multicenter evaluation of the analytical and clinical performance of the Elecsys S100 immunoassay in patients with malignant melanoma. Clin Chem Lab Med 43:557–563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Astrand, R., Undén, J. (2019). Clinical Use of the Calcium-Binding S100B Protein, a Biomarker for Head Injury. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_42

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics