Skip to main content

Analysis of Ca2+-Dependent Weibel–Palade Body Tethering by Live Cell TIRF Microscopy: Involvement of a Munc13-4/S100A10/Annexin A2 Complex

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Endothelial cells respond to blood vessel injury by the acute release of the procoagulant von Willebrand factor, which is stored in unique secretory granules called Weibel–Palade bodies (WPBs). Stimulated, Ca2+-dependent exocytosis of WPBs critically depends on their proper targeting to the plasma membrane, but the mechanism of WPB-plasma membrane tethering prior to fusion is not well characterized. Here we describe a method to visualize and analyze WPB tethering and fusion in living human umbilical vein endothelial cells (HUVEC) by total internal reflection fluorescence (TIRF) microscopy. This method is based on automated object detection and allowed us to identify components of the tethering complex of WPBs and to monitor their dynamics in space and time. An important tethering factor identified by this means was Munc13-4 that was shown to interact with S100A10 residing in a complex with plasma membrane-bound annexin A2.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112

    Article  CAS  Google Scholar 

  2. Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424. https://doi.org/10.1146/annurev.biochem.67.1.395

    Article  CAS  PubMed  Google Scholar 

  3. Wagner DD, Frenette PS (2008) The vessel wall and its interactions. Blood 111:5271–5281. https://doi.org/10.1182/blood-2008-01-078204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nightingale T, Cutler D (2013) The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 11(Suppl. 1):192–201. https://doi.org/10.1111/jth.12225

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valentijn KM, Eikenboom J (2013) Weibel-Palade bodies: a window to von Willebrand disease. J Thromb Haemost 11:581–592. https://doi.org/10.1111/jth.12160

    Article  CAS  PubMed  Google Scholar 

  6. Matsushita K, Morrell CN, Cambien B et al (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115:139–150

    Article  CAS  Google Scholar 

  7. Pulido IR, Jahn R, Gerke V (2011) VAMP3 is associated with endothelial Weibel-Palade bodies and participates in their Ca(2+)-dependent exocytosis. Biochim Biophys Acta 1813:1038–1044. https://doi.org/10.1016/j.bbamcr.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  8. van Breevoort D, van Agtmaal EL, Dragt BS et al (2012) Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J Proteome Res 11:2925–2936. https://doi.org/10.1021/pr300010r

    Article  CAS  PubMed  Google Scholar 

  9. van Breevoort D, Snijders AP, Hellen N et al (2014) STXBP1 promotes Weibel-Palade body exocytosis through its interaction with the Rab27A effector Slp4-a. Blood 123:3185–3194. https://doi.org/10.1182/blood-2013-10-535831

    Article  CAS  PubMed  Google Scholar 

  10. Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom 12:Unit12.18. doi: https://doi.org/10.1002/0471142956.cy1218s50

  11. Schuberth CE, Tängemo C, Coneva C et al (2015) Self-organization of core Golgi material is independent of COPII-mediated endoplasmic reticulum export. J Cell Sci 128:1279–1293. https://doi.org/10.1242/jcs.154443

    Article  CAS  PubMed  Google Scholar 

  12. Chehab T, Santos NC, Holthenrich A et al (2017) A novel Munc13-4/S100A10/annexin A2 complex promotes Weibel-Palade body exocytosis in endothelial cells. Mol Biol Cell 28:1688–1700. https://doi.org/10.1091/mbc.E17-02-0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neeft M, Wieffer M, de Jong AS et al (2005) Munc13-4 is an effector of Rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell 16:731–741. https://doi.org/10.1091/mbc.E04-10-0923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boswell KL, James DJ, Esquibel JM et al (2012) Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion. J Cell Biol 197:301–312. https://doi.org/10.1083/jcb.201109132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Babich V, Meli A, Knipe L et al (2008) Selective release of molecules from Weibel-Palade bodies during a lingering kiss. Blood 111:5282–5290. https://doi.org/10.1182/blood-2007-09-113746

    Article  CAS  PubMed  Google Scholar 

  16. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756. https://doi.org/10.1172/JCI107470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison-Lavoie KJ, Michaux G, Hewlett L et al (2006) P-selectin and CD63 use different mechanisms for delivery to Weibel-Palade bodies. Traffic 7:647–662. https://doi.org/10.1111/j.1600-0854.2006.00415.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Gerke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Criado Santos, N., Chehab, T., Holthenrich, A., Gerke, V. (2019). Analysis of Ca2+-Dependent Weibel–Palade Body Tethering by Live Cell TIRF Microscopy: Involvement of a Munc13-4/S100A10/Annexin A2 Complex. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics