Skip to main content

Preparation and Iron Redox Speciation Study of the Fe(II)-Binding Antimicrobial Protein Calprotectin

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Calprotectin (CP, S100A8/S100A9 heterooligomer) is an abundant metal-sequestering host-defense protein expressed by neutrophils, other white blood cells, and epithelial cells. The apoprotein is a S100A8/S100A9 heterodimer that contains two sites for transition metal binding at the S100A8/S100A9 interface: a His3Asp motif (site 1) and a His6 motif (site 2). In this chapter, we provide a step-by-step protocol for the overexpression and purification of the human and murine orthologues of CP that affords each apo heterodimer in high yield and purity. In these procedures, the S100A8 and S100A9 subunits are overexpressed in Escherichia coli BL21(DE3), and each apo heterodimer is obtained following cell lysis, folding, column chromatography, and dialysis against Chelex resin to reduce metal contamination. Recent studies demonstrated that human CP coordinates Fe(II) and that the protein affects the redox speciation of Fe in solution. An Fe redox speciation assay employing ferrozine is described that demonstrates the ability of both the human and murine orthologues of CP to shift the redox speciation of Fe from the ferric to the ferrous oxidation state over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zygiel EM, Nolan EM (2018) Transition metal sequestration by the host-defense protein calprotectin. Annu Rev Biochem 87:621–643

    Article  CAS  Google Scholar 

  2. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537

    Article  CAS  Google Scholar 

  3. Corbin BD, Seeley EH, Raab A et al (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865):962–965

    Article  CAS  Google Scholar 

  4. Hood MI, Mortensen BL, Moore JL et al (2012) Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog 8(12):e1003068

    Article  CAS  Google Scholar 

  5. Liu JZ, Jellbauer S, Poe AJ et al (2012) Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11(3):227–239

    Article  CAS  Google Scholar 

  6. De Jong HK, Achouiti A, Koh GC et al (2015) Expression and function of S100A8/A9 (calprotectin) in human typhoid fever and the murine Salmonella model. PLoS Negl Trop Dis 9(4):e0003663

    Article  Google Scholar 

  7. Wakeman CA, Moore JL, Noto MJ et al (2016) The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat Commun 7:11951

    Article  CAS  Google Scholar 

  8. Clark HL, Jhingran A, Sun Y et al (2016) Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection. J Immunol 196(1):336–344

    Article  CAS  Google Scholar 

  9. Hobbs JA, May R, Tanousis K et al (2003) Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol 23(7):2564–2576

    Article  CAS  Google Scholar 

  10. Hunter MJ, Chazin WJ (1998) High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J Biol Chem 273(20):12427–12435

    Article  CAS  Google Scholar 

  11. Korndörfer IP, Brueckner F, Skerra A (2007) The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J Mol Biol 370(5):887–898

    Article  Google Scholar 

  12. Brophy MB, Hayden JA, Nolan EM (2012) Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc 134(43):18089–18100

    Article  CAS  Google Scholar 

  13. Hayden JA, Brophy MB, Cunden LS et al (2013) High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 135(2):775–787

    Article  Google Scholar 

  14. Brophy MB, Nakashige TG, Gaillard A et al (2013) Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J Am Chem Soc 135(47):17804–17817

    Article  Google Scholar 

  15. Damo SM, Kehl-Fie TE, Sugitani N et al (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci 110(10):3841–3846

    Article  CAS  Google Scholar 

  16. Gagnon DM, Brophy MB, Bowman SEJ et al (2015) Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis. J Am Chem Soc 137(8):3004–3016

    Article  CAS  Google Scholar 

  17. Nakashige TG, Stephan JR, Cunden LS et al (2016) The hexahistidine motif of host-defense protein human calprotectin contributes to zinc withholding and its functional versatility. J Am Chem Soc 138(37):12243–12251

    Article  CAS  Google Scholar 

  18. Nakashige TG, Zhang B, Krebs C et al (2015) Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol 11(10):765–771

    Article  CAS  Google Scholar 

  19. Nakashige TG, Nolan EM (2017) Human calprotectin affects the redox speciation of iron. Metallomics 9(8):1086–1095

    Article  CAS  Google Scholar 

  20. Nakashige TG, Zygiel EM, Drennan CL et al (2017) Nickel sequestration by the host-defense protein human calprotectin. J Am Chem Soc 139(26):8828–8836

    Article  CAS  Google Scholar 

  21. Hadley RC, Gu Y, Nolan EM (2018) Initial biochemical and functional evaluation of murine calprotectin reveals Ca(II)-dependence and its ability to chelate multiple nutrient transition metal ions. Biochemistry 57(19):2846–2856

    Article  CAS  Google Scholar 

  22. Vogl T, Roth J, Sorg C et al (1999) Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 10(11):1124–1130

    Article  CAS  Google Scholar 

  23. Strupat K, Rogniaux H, Van Dorsselaer A et al (2000) Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis. J Am Soc Mass Spectrom 11(9):780–788

    Article  CAS  Google Scholar 

  24. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405(2):199–221

    Article  CAS  Google Scholar 

  25. Kehl-Fie TE, Chitayat S, Hood MI et al (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10(2):158–164

    Article  CAS  Google Scholar 

  26. Stephan JR, Nolan EM (2016) Calcium-induced tetramerization and zinc chelation shield human calprotectin from degradation by host and bacterial extracellular proteases. Chem Sci 7(3):1962–1975

    Article  CAS  Google Scholar 

  27. Stookey LL (1970) Ferrozine- a new spectrophotometric reagent for iron. Anal Chem 42(7):779–781

    Article  CAS  Google Scholar 

  28. Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our current studies of calprotectin are supported by the National Science Foundation (CHE-1352132) and the National Institutes of Health (R01GM118695 and R01GM126376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hadley, R.C., Nolan, E.M. (2019). Preparation and Iron Redox Speciation Study of the Fe(II)-Binding Antimicrobial Protein Calprotectin. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics