Skip to main content

Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells

  • Protocol
  • First Online:
Cancer Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1928))

Abstract

A large amount of energy used for nutrient processing and cellular functions is essential for tumorigenesis. Total intracellular adenosine triphosphate (ATP) is mainly generated by glycolysis and mitochondrial oxidative phosphorylation. Here, we provide a protocol for measurements of energy metabolism in cancer cells by using Seahorse XF24 Extracellular Flux analyzer. Specifically, this machine measures glycolysis by analyzing the extracellular acidification rate (ECAR) and measures mitochondrial oxidative phosphorylation on the basis of the oxygen consumption rate (OCR), through real-time and live cell analysis. This protocol is provided for researchers who are unfamiliar with the method and to aid them in carrying out the technique successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21(3):297–308. https://doi.org/10.1016/j.ccr.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herst PM, Tan AS, Scarlett DJ, Berridge MV (2004) Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochim Biophys Acta 1656(2-3):79–87. https://doi.org/10.1016/j.bbabio.2004.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  6. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698. https://doi.org/10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364(Pt 1):309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakashima RA, Paggi MG, Pedersen PL (1984) Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells. Cancer Res 44(12 Pt 1):5702–5706

    CAS  PubMed  Google Scholar 

  9. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  10. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418. https://doi.org/10.1111/j.1742-4658.2007.05686.x

    Article  CAS  PubMed  Google Scholar 

  11. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313(3):459–465

    Article  CAS  PubMed  Google Scholar 

  12. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3(11):1272–1285. https://doi.org/10.1158/2159-8290.CD-13-0397

    Article  CAS  PubMed  Google Scholar 

  13. Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola RS, Jacks T, Rabinowitz JD, White E (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27(13):1447–1461. https://doi.org/10.1101/gad.219642.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107(19):8788–8793. https://doi.org/10.1073/pnas.1003428107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470. https://doi.org/10.1101/gad.2016311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qian W, Van Houten B (2010) Alterations in bioenergetics due to changes in mitochondrial DNA copy number. Methods 51(4):452–457. https://doi.org/10.1016/j.ymeth.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  17. van der Windt GJ, Chang CH, Pearce EL (2016) Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr Protoc Immunol 113:3 16B 11–13 16B 14. https://doi.org/10.1002/0471142735.im0316bs113

    Article  Google Scholar 

  18. Zhang J, Nuebel E, Wisidagama DR, Setoguchi K, Hong JS, Van Horn CM, Imam SS, Vergnes L, Malone CS, Koehler CM, Teitell MA (2012) Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 7(6):1068–1085. https://doi.org/10.1038/nprot.2012.048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Yong Liu and Agilent agents for helpful discussions and suggestions. Jing Zhang is supported by a DoD BCRP Breakthrough Fellowship Award (W81XWH-17-1-0016). Qing Zhang is supported by grants from the National Cancer Institute (R01CA211732, R21CA223675) and American Cancer Society (RSG-18-059-01-TBE). Qing Zhang also received a career development award from the DoD (W81XWH-15-1-0599). Qing Zhang is a V Scholar, Kimmel Scholar, Komen Career Catalyst Awardee, and Mary Kay Foundation Awardee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Qing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, J., Zhang, Q. (2019). Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics