Skip to main content

Assessing the Quality of Recombinant Products Made in Yeast

  • Protocol
  • First Online:
Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1923))

Abstract

The product quality of recombinant proteins is of major importance for their intended purpose. The initial characterization of both simple and complex products should be performed as soon as practical. However, to comply with this high standard, appropriate selection of complementary methods is required. Therefore, conventional and sophisticated techniques are available, providing diverse information about the product quality.

In this chapter methods are presented, which enable the determination of the overall protein quality, their aggregation and peptide composition. Methods applied for the determination of posttranslational modifications such as glycan analysis are not described. In this regard, chromatographic, high-resolution technologies for the integrity of proteins as well as Western blot with specific detection methods are introduced, and individual strengths and perceived limitations are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin-Cereghino GP, Lin-Cereghino J, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332. https://doi.org/10.1016/S0958166902003300

    Article  CAS  Google Scholar 

  2. Ferrer-Miralles N, Domingo-Espín J, Corchero J et al (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17. https://doi.org/10.1186/1475-2859-8-17

    Article  CAS  Google Scholar 

  3. Martinez JLL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23(6):965–971. https://doi.org/10.1016/j.copbio.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  4. Hong P, Koza S, Bouvier ESP (2012) A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–2950. https://doi.org/10.1080/10826076.2012.743724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Synge RL (1950) Fractionation of hydrolysis products of amylose by electrokinetic ultrafiltration in an agaragar jelly. Biochem J 24:41–42

    Google Scholar 

  6. Lindqvist B, Storgards T (1975) Molecular-sieving properties of starch. Nature 175:511–512

    Article  Google Scholar 

  7. Coutinho FMB, Rcia M, Lica A et al (1997) Porous structure and swelling properties of styrene– divinylbenzene copolymers for size exclusion chromatography. J Appl Polym Sci 65:1257–1262. https://doi.org/10.1002/(SICI)1097-4628(19970815)65

    Article  CAS  Google Scholar 

  8. Li Y, Tolley HD, Lee ML (2010) Size-exclusion separation of proteins using a biocompatible polymeric monolithic capillary column with mesoporosity. J Chromatogr A 1217:8181–8185. https://doi.org/10.1016/j.chroma.2010.10.067

    Article  CAS  PubMed  Google Scholar 

  9. Striegel AM (2016) Viscometric detection in size-exclusion chromatography: principles and select applications. Chromatographia 79:945–960. https://doi.org/10.1007/s10337-016-3078-0

    Article  CAS  Google Scholar 

  10. Manning MC, Manning RR, Holcomb RE et al (2014) Review of orthogonal methods to SEC for quantitation and characterization of protein aggregates. BioPharm Int 27:1–2

    Google Scholar 

  11. Folta-Stogniew E (2006) Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors. In: New and Emerging Proteomic Techniques. Humana Press, Totowa, NJ, pp 97–112. https://doi.org/10.1385/1-59745-026-X:97

    Chapter  Google Scholar 

  12. Folta-Stogniew E, Williams KR (1999) Determination of molecular masses of proteins in solution: implementation of an HPLC size exclusion chromatography and laser light scattering service in a core laboratory. J Biomol Tech 10:51–63

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tarazona MP, Saiz E (2003) Combination of SEC/MALS experimental procedures and theoretical analysis for studying the solution properties of macromolecules. J Biochem Biophys Methods 56:95–116. https://doi.org/10.1016/S0165-022X(03)00075-7

    Article  CAS  PubMed  Google Scholar 

  14. Ambrogelly A, Liu YH, Li H et al (2012) Characterization of antibody variants during process development: the tale of incomplete processing of N-terminal secretion peptide. MAbs 4:701–709. https://doi.org/10.4161/mabs.21614

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bouvier ESP, Koza SM (2014) Advances in size-exclusion separations of proteins and polymers by UHPLC. Trends Anal Chem 63:85–94. https://doi.org/10.1016/j.trac.2014.08.002

    Article  CAS  Google Scholar 

  16. Gulati D, Bongers J, Burman S (1999) RP-HPLC tryptic mapping of IgG1 proteins with post-column fluorescence derivatization. J Pharm Biomed Anal 21:887–893. https://doi.org/10.1016/S0731-7085(99)00119-3

    Article  CAS  PubMed  Google Scholar 

  17. Lee GF, Anderson DC (1991) Reversed-phase high-pressure liquid chromatographic tryptic peptide mapping for the comparison and study of monoclonal antibodies. Bioconjug Chem 2:367–374. https://doi.org/10.1021/bc00011a012

    Article  CAS  PubMed  Google Scholar 

  18. Lundell N, Schreitmüller T (1999) Sample preparation for peptide mapping – a pharmaceutical quality-control perspective. Anal Biochem 266:31–47. https://doi.org/10.1006/abio.1998.2919

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Li H, Shameem M, Xu W (2016) Development of a sample preparation method for monitoring correct disulfide linkages of monoclonal antibodies by liquid chromatography-mass spectrometry. Anal Biochem 495:21–28. https://doi.org/10.1016/j.ab.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  20. Hennessy TP, Boysen RI, Huber MI et al (2003) Peptide mapping by reversed-phase high-performance liquid chromatography employing silica rod monoliths. J Chromatogr A 1009:15–28. https://doi.org/10.1016/S0021-9673(03)00445-X

    Article  CAS  PubMed  Google Scholar 

  21. Krokhin OV, Craig R, Spicer V et al (2004) An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC. Mol Cell Proteomics 3:908–919. https://doi.org/10.1074/mcp.M400031-MCP200

    Article  CAS  PubMed  Google Scholar 

  22. Chakraborty AB, Berger SJ (2005) Optimization of reversed-phase peptide liquid chromatography ultraviolet mass spectrometry analyses using an automated blending methodology. J Biomol Tech 16(4):327–335

    PubMed  PubMed Central  Google Scholar 

  23. Wagner K, Miliotis T, Marko-Varga G et al (2002) An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation. Anal Chem 74:809–820. https://doi.org/10.1021/ac010627f

    Article  CAS  PubMed  Google Scholar 

  24. Gong B, Burnina I, Stadheim TA, Li H (2013) Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry. J Mass Spectrom 48:1308–1317. https://doi.org/10.1002/jms.3291

    Article  CAS  PubMed  Google Scholar 

  25. Xie H, Gilar M, Gebler JC (2009) Characterization of Protein Impurities by Peptide Mapping with UPLC/MSE Application Note 1–6, Waters Application Note, Waters Corporation, http://www.waters.com/webassets/cms/library/docs/720002809en.pdf

  26. Leblanc Y, Ramon C, Bihoreau N, Chevreux G (2017) Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: case study after a long-term storage at +5 °C. J Chromatogr B 1048:130–139. https://doi.org/10.1016/j.jchromb.2017.02.017

    Article  CAS  Google Scholar 

  27. Fekete S, Veuthey JL, Guillarme D (2017) Achievable separation performance and analysis time in current liquid chromatographic practice for monoclonal antibody separations. J Pharm Biomed Anal 141:59–69. https://doi.org/10.1016/j.jpba.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  28. Ahamed T, Nfor BK, Verhaert PDEM et al (2007) pH-gradient ion-exchange chromatography: an analytical tool for design and optimization of protein separations. J Chromatogr A 1164:181–188. https://doi.org/10.1016/j.chroma.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  29. Fekete S, Veuthey JL, Guillarme D (2015) Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: theory and practice. J Chromatogr A 1408:1–14. https://doi.org/10.1016/j.chroma.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  30. Rea JC, Moreno GT, Lou Y, Farnan D (2011) Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations. J Pharm Biomed Anal 54:317–323. https://doi.org/10.1016/j.jpba.2010.08.030

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh R, Gilda JE, Gomes AV (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 11:549–560. https://doi.org/10.1586/14789450.2014.939635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blancher C, Jones A (2001) SDS-PAGE and Western blotting techniques. In: Metastasis research protocols. Humana Press, Totowa, NJ, pp 145–162. https://doi.org/10.1385/1-59259-136-1:145

    Chapter  Google Scholar 

  34. Kurien BT, Scofield RH (2009) Introduction to protein blotting. Methods Mol Biol 536:9–22. https://doi.org/10.1007/978-1-59745-542-8_3

    Article  CAS  PubMed  Google Scholar 

  35. Mishra M, Tiwari S, Gomes AV (2017) Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics 14:1037–1053. https://doi.org/10.1080/14789450.2017.1388167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J Am Chem Soc 127:9328–9329. https://doi.org/10.1021/ja0510055

    Article  CAS  PubMed  Google Scholar 

  37. Devine PL, Warren JA (1990) Glycoprotein detection on immobilon PVDF transfer membrane using the periodic acid/Schiff reagent. BioTechniques 8:492–495

    CAS  PubMed  Google Scholar 

  38. Thornton DJ, Carlstedt I, Sheehan JK (1996) Identification of glycoproteins on nitrocellulose membranes and gels. Mol Biotechnol 5:171–176. https://doi.org/10.1007/BF02789065

    Article  CAS  PubMed  Google Scholar 

  39. Packer NH, Ball MS, Devine PL, Patton WF (2002) Detection of glycoproteins in gels and blots. In: Protein protocols handbook. Humana Press, Totowa, NJ, pp 761–772

    Chapter  Google Scholar 

  40. Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012:1–10. https://doi.org/10.1155/2012/640923

    Article  CAS  Google Scholar 

  41. Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4:3–29. https://doi.org/10.1007/s12154-010-0043-5

    Article  PubMed  Google Scholar 

  42. Sato T (2014) Lectin-probed Western blot analysis. Methods Mol Biol 1200:93–100. https://doi.org/10.1007/978-1-4939-1292-6_8

    Article  CAS  PubMed  Google Scholar 

  43. Badr HA, AlSadek DMM, Mathew MP et al (2015) Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation. Data Brief 5:481–488. https://doi.org/10.1016/j.dib.2015.09.043

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zachara NE, Vosseller K, Hart GW (2011) Detection and analysis of proteins modified by O-linked N -acetylglucosamine. Curr Protoc Mol Biol Chapter 17:Unit 17.6. https://doi.org/10.1002/0471142727.mb1706s95

    Article  PubMed  Google Scholar 

  45. Mandell JW (2003) Phosphorylation state-specific antibodies: applications in investigative and diagnostic pathology. Am J Pathol 163:1687–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333. https://doi.org/10.1002/elps.200305844

    Article  CAS  PubMed  Google Scholar 

  47. Gurramkonda C, Adnan A, Gäbel T et al (2009) Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of Hepatitis B surface antigen. Microb Cell Factories 8:13:1–13:8. https://doi.org/10.1186/1475-2859-8-13

    Article  CAS  Google Scholar 

  48. Gurramkonda C, Polez S, Skoko N et al (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Factories 9(3):1–11. https://doi.org/10.1186/1475-2859-9-31

    Article  CAS  Google Scholar 

  49. Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    Article  CAS  PubMed  Google Scholar 

  50. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448. https://doi.org/10.1002/elps.1150060905

    Article  CAS  Google Scholar 

  51. Advion (2017) https://advion.com/. Accessed 14 Dec 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karola Vorauer-Uhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vorauer-Uhl, K., Lhota, G. (2019). Assessing the Quality of Recombinant Products Made in Yeast. In: Gasser, B., Mattanovich, D. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 1923. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9024-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9024-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9023-8

  • Online ISBN: 978-1-4939-9024-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics