Skip to main content

Established and Upcoming Yeast Expression Systems

  • Protocol
  • First Online:
Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1923))

Abstract

Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gellissen G, Kunze G, Gaillardin C et al (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096. https://doi.org/10.1016/j.femsyr.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Çelik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118. https://doi.org/10.1016/j.biotechadv.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  3. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546–567

    Article  CAS  PubMed  Google Scholar 

  4. Hittinger CT (2013) Saccharomyces diversity and evolution: a budding model genus. Trends Genet 29:309–317. https://doi.org/10.1016/j.tig.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Hasunuma T, Ishii J, Kondo A (2015) Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 29:1–9. https://doi.org/10.1016/j.cbpa.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  6. Shen MWY, Fang F, Sandmeyer S, Da Silva NA (2012) Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 29:495–503. https://doi.org/10.1002/yea.2930

    Article  CAS  PubMed  Google Scholar 

  7. Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170. https://doi.org/10.1111/j.1567-1364.2011.00774.x

    Article  CAS  PubMed  Google Scholar 

  8. Shin MK, Yoo HS (2013) Animal vaccines based on orally presented yeast recombinants. Vaccine 31:4287–4292. https://doi.org/10.1016/j.vaccine.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  9. Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnol 26(10):1155–1160. https://doi.org/10.1038/nbt1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nookaew I, Papini M, Pornputtapong N et al (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 40:10084–10097. https://doi.org/10.1093/nar/gks804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ibanez C, Perez-Torrado R, Morard M et al (2017) RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. Int J Food Microbiol 257:262–270. https://doi.org/10.1016/j.ijfoodmicro.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  12. Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349. https://doi.org/10.1126/science.1158441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Usaite R, Wohlschlegel J, Venable JD et al (2008) Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 7:266–275. https://doi.org/10.1021/pr700580m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paulo JA, O’Connell JD, Gaun A, Gygi SP (2015) Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol Biol Cell 26:4063–4074. https://doi.org/10.1091/mbc.E15-07-0499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jewett MC, Hofmann G, Nielsen J (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197. https://doi.org/10.1016/j.copbio.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  16. Villas-Boas SG, Moxley JF, Akesson M et al (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388:669–677. https://doi.org/10.1042/BJ20041162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sauer U (2006) Metabolic networks in motion: 13 C-based flux analysis. Mol Syst Biol 2:1–10. https://doi.org/10.1038/msb4100109

    Article  CAS  Google Scholar 

  18. Wasylenko TM, Stephanopoulos G (2015) Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 112:470–483. https://doi.org/10.1002/bit.25447

    Article  CAS  PubMed  Google Scholar 

  19. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627. https://doi.org/10.1038/35001009

    Article  CAS  PubMed  Google Scholar 

  20. Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–805. https://doi.org/10.1126/science.1075090

    Article  CAS  PubMed  Google Scholar 

  21. Harbison CT, Gordon DB, Lee TI et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104. https://doi.org/10.1038/nature02800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huh W, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691. https://doi.org/10.1038/nature02026

    Article  CAS  PubMed  Google Scholar 

  23. Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253. https://doi.org/10.1101/gr.234503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Österlund T, Nookaew I, Bordel S, Nielsen J (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:36. https://doi.org/10.1186/1752-0509-7-36

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun J, Shao Z, Zhao H et al (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2082–2092. https://doi.org/10.1002/bit.24481

    Article  CAS  PubMed  Google Scholar 

  26. Hammer SK, Avalos JL (2017) Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 13:823–832. https://doi.org/10.1038/nchembio.2429

    Article  CAS  PubMed  Google Scholar 

  27. Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704. https://doi.org/10.1534/genetics.111.130765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Natter K, Kohlwein SD (2013) Yeast and cancer cells—common principles in lipid metabolism. Biochim Biophys Acta 1831:314–326. https://doi.org/10.1016/j.bbalip.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun S, Yang F, Tan G et al (2016) An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res 26:670–680. https://doi.org/10.1101/gr.192526.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valenzuela P, Medina A, Rutter WJ et al (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350. https://doi.org/10.1038/298347a0

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Garcia L, Martín L, Mangues R et al (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15:33. https://doi.org/10.1186/s12934-016-0437-3

    Article  CAS  Google Scholar 

  32. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  33. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000. https://doi.org/10.1038/nbt.3040

    Article  CAS  PubMed  Google Scholar 

  34. Huang C, Lowe AJ, Batt CA (2010) Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Appl Microbiol Biotechnol 87:401–410. https://doi.org/10.1007/s00253-010-2590-7

    Article  CAS  PubMed  Google Scholar 

  35. Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16. https://doi.org/10.1111/1567-1364.12195

    Article  CAS  PubMed  Google Scholar 

  36. Liu Z, Hou J, Martínez JL et al (2013) Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:8955–8962. https://doi.org/10.1007/s00253-013-4715-2

    Article  CAS  PubMed  Google Scholar 

  37. Berlec A, Štrukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274. https://doi.org/10.1007/s10295-013-1235-0

    Article  CAS  PubMed  Google Scholar 

  38. Parsaie Nasab F, Aebi M, Bernhard G, Frey AD (2013) A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol 79:997–1007. https://doi.org/10.1128/AEM.02817-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu S, Zhang G-Y, Zhang H et al (2016) Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Factories 15:179. https://doi.org/10.1186/s12934-016-0575-7

    Article  CAS  Google Scholar 

  40. Galao RP, Scheller N, Alves-Rodrigues I et al (2007) Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microb Cell Factories 6:32. https://doi.org/10.1186/1475-2859-6-32

    Article  CAS  Google Scholar 

  41. Petranovic D, Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease ? Trends Biotechnol 26:584–590. https://doi.org/10.1016/j.tibtech.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  42. Billingsley JM, DeNicola AB, Tang Y (2016) Technology development for natural product biosynthesis in Saccharomyces cerevisiae. Curr Opin Biotechnol 42:74–83. https://doi.org/10.1016/j.copbio.2016.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214. https://doi.org/10.1111/j.1567-1364.2011.00769.x

    Article  CAS  PubMed  Google Scholar 

  44. Parent SA, Fenimore CM, Bostian KA (1985) Vector systems for the expression, analysis and cloning of DNA sequences in S cerevisiae. Yeast 1:83–138. https://doi.org/10.1002/yea.320010202

    Article  CAS  PubMed  Google Scholar 

  45. Clark-Walker GD, Miklos GLG (1974) Localization and quantification of circular DNA in yeast. Eur J Biochem 41:359–365. https://doi.org/10.1111/j.1432-1033.1974.tb03278.x

    Article  CAS  PubMed  Google Scholar 

  46. Hartley JL, Donelson JE (1980) Nucleotide sequence of the yeast plasmid. Nature 286:860–864. https://doi.org/10.1038/286860a0

    Article  CAS  PubMed  Google Scholar 

  47. Broach JR (1983) Construction of high copy yeast vectors using 2-um circle sequences. In: Wu R, Grossman L, Moldave K (eds) Methods in enzymology. Academic Press, New York, pp 307–325

    Google Scholar 

  48. Futcher AB, Cox BS (1983) Maintenance of the 2 microns circle plasmid in populations of Saccharomyces cerevisiae. J Bacteriol 154:612–622

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Futcher AB, Cox BS (1984) Copy number and the stability of 2-um circle-based artificial plasmids of Saccharomyces cerevisiae. J Bacteriol 157:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jayaram M, Li Y-Y, Broach JR (1983) The yeast plasmid 2 circle encodes components required for its high copy propagation. Cell 34:95–104. https://doi.org/10.1016/0092-8674(83)90139-3

    Article  CAS  PubMed  Google Scholar 

  51. Kikuchi Y (1983) Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell 35:487–493. https://doi.org/10.1016/0092-8674(83)90182-4

    Article  CAS  PubMed  Google Scholar 

  52. Sturley SL, Young TW (1986) Genetic manipulation of commercial yeast strains. Biotechnol Genet Eng Rev 4:1–38. https://doi.org/10.1080/02648725.1986.10647821

    Article  CAS  Google Scholar 

  53. Mishra S, Baranwal R (2009) Yeast genetics and biotechnological applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Netherlands, Dordrecht, pp 323–355

    Chapter  Google Scholar 

  54. Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109. https://doi.org/10.1038/275104a0

    Article  CAS  PubMed  Google Scholar 

  55. Wang T-T, Choi Y-J, Lee BH (2001) Transformation systems of non-Saccharomyces yeasts. Crit Rev Biotechnol 21:177–218

    Article  CAS  PubMed  Google Scholar 

  56. Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167. https://doi.org/10.1002/yea.320020304

    Article  CAS  PubMed  Google Scholar 

  57. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488. https://doi.org/10.1002/yea.320080602

    Article  CAS  PubMed  Google Scholar 

  58. Kuo C, Campbell JL (1983) Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Am Soc Microbiol 3:1730–1737

    CAS  Google Scholar 

  59. Waterham HR, Wanders RJ (2007) Saccharomyces cerevisiae as a tool for human gene function discovery. In: Stansfield I, Stark MJ (eds) Methods in microbiology. Academic Press, New York, pp 577–595

    Google Scholar 

  60. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Christianson TW, Sikorski RS, Dante M et al (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122. https://doi.org/10.1016/0378-1119(92)90454-W

    Article  CAS  PubMed  Google Scholar 

  62. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122. https://doi.org/10.1016/0378-1119(95)00037-7

    Article  CAS  PubMed  Google Scholar 

  63. Labbe S, Thiele DJ (1999) Copper ion inducible and repressible Systems in Yeast. In: Glorioso JC, Schmidt MC (eds) Methods in enzymology. Academic Press, New York, pp 145–153

    Google Scholar 

  64. Siewers V (2014) An overview on selection marker genes for transformation of Saccharomyces cerevisiae. In: Mapelli V (ed) Yeast metabolic engineering. Springer New York, New York, NY

    Google Scholar 

  65. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933. https://doi.org/10.1073/pnas.75.4.1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mülleder M, Campbell K, Matsarskaia O et al (2016) Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities. F1000Res 5:2351. https://doi.org/10.12688/f1000research.9606.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Giersberg M, Degelmann A, Bode R et al (2012) Production of a thermostable alcohol dehydrogenase from Rhodococcus ruber in three different yeast species using the Xplor?2 transformation/expression platform. J Ind Microbiol Biotechnol 39:1385–1396. https://doi.org/10.1007/s10295-012-1134-9

    Article  CAS  PubMed  Google Scholar 

  68. Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808. https://doi.org/10.1002/yea.320101310

    Article  CAS  PubMed  Google Scholar 

  69. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553. https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  70. Tuite MF, Dobson MJ, Roberts NA, King RM (1982) Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO J 1:603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Derynck R, Singh A, Goeddel DV (1983) Expression of the human interferon-y cDNA in yeast. Nucleic Acids Res 1:1819–1837

    Article  Google Scholar 

  72. Mellor J, Dobson MJ, Roberts NA et al (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14. https://doi.org/10.1016/0378-1119(90)90159-O

    Article  CAS  PubMed  Google Scholar 

  73. Bitter GA, Egan KM (1984) Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehyde3-phosphate dehydrogenase gene promoter. Gene 32:263–274. https://doi.org/10.1016/0378-1119(84)90002-7

    Article  CAS  PubMed  Google Scholar 

  74. Hitzeman RA, Hagie FE, Levine HL et al (1981) Expression of a human gene for interferon in yeast. Nature 293:717–722. https://doi.org/10.1038/293717a0

    Article  CAS  PubMed  Google Scholar 

  75. Dobson MJ, Tuite MF, Mellor J et al (1983) Expression in Saccharomyces cerevisiae of human interferon-alpha directed by the TRP1 5′ region. Nucleic Acids Res 11:2287–2302. https://doi.org/10.1093/nar/11.8.2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brake AJ, Merryweather JP, Coit DG et al (1984) Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 81:4642–4646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ammerer G (1983) Expression of genes in yeast using the ADC1 promoter. In: Wu R, Grossman L, Moldave K (eds) Methods in enzymology. Academic Press, New York, pp 192–201

    Google Scholar 

  78. Goff CG, Moir DT, Kohno T et al (1984) Expression of calf prochymosin in Saccharomyces cerevisiae. Gene 27:35–46. https://doi.org/10.1016/0378-1119(84)90236-1

    Article  CAS  PubMed  Google Scholar 

  79. Rönicke V, Graulich W, Mumberg D et al (1997) Use of conditional promoters for expression of heterologous proteins in Saccharomyces cerevisiae. Methods Enzymol 283:313–322

    Article  PubMed  Google Scholar 

  80. Weinhandl K, Winkler M, Glieder A, Camattari A (2014) Carbon source dependent promoters in yeasts. Microb Cell Factories 13:5. https://doi.org/10.1186/1475-2859-13-5

    Article  CAS  Google Scholar 

  81. Miyanohara A, Toh-E A, Nozaki C et al (1983) Expression of hepatitis B surface antigen gene in yeast. Proc Natl Acad Sci U S A 80:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Curran KA, Crook NC, Karim AS et al (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun 5:1–20. https://doi.org/10.1038/ncomms5002

    Article  CAS  Google Scholar 

  83. Dahl RH, Zhang F, Alonso-gutierrez J et al (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039–1046. https://doi.org/10.1038/nbt.2689

    Article  CAS  PubMed  Google Scholar 

  84. Rajkumar AS, Liu G, Bergenholm D et al (2016) Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res 44:e136. https://doi.org/10.1093/nar/gkw553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chung BH, Nam SW, Kim BM, Park YH (1996) Highly efficient secretion of heterologous proteins from Saccharomyces cerevisiae using inulinase signal peptides. Biotechnol Bioeng 49:473–479. https://doi.org/10.1002/(SICI)1097-0290(19960220)49:4<473::AID-BIT15>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  86. Hitzeman R, Leung D, Perry L et al (1983) Secretion of human interferons by yeast. Science 219:620–625. https://doi.org/10.1126/science.6186023

    Article  CAS  PubMed  Google Scholar 

  87. Mori A, Hara S, Sugahara T et al (2015) Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J Biosci Bioeng 120:518–525. https://doi.org/10.1016/j.jbiosc.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  88. Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agric Biol Chem 33:1519–1520. https://doi.org/10.1080/00021369.1969.10859497

    Article  CAS  Google Scholar 

  89. Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438. https://doi.org/10.1007/s10295-009-0638-4

    Article  CAS  PubMed  Google Scholar 

  91. Ergun BG, Calik P (2016) Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 39:1–36. https://doi.org/10.1007/s00449-015-1476-6

    Article  CAS  PubMed  Google Scholar 

  92. Choi B-K, Bobrowicz P, Davidson RC et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hamilton SR, Bobrowicz P, Bobrowicz B et al (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246. https://doi.org/10.1126/science.1088166

    Article  CAS  PubMed  Google Scholar 

  94. Vervecken W, Kaigorodov V, Callewaert N et al (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Çalık P, Ata Ö, Güneş H et al (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem Eng J 95:20–36. https://doi.org/10.1016/j.bej.2014.12.003

    Article  CAS  Google Scholar 

  96. Gasser B, Prielhofer R, Marx H et al (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208. https://doi.org/10.2217/fmb.12.133

    Article  CAS  PubMed  Google Scholar 

  97. De Schutter K, Lin Y-C, Tiels P et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566. https://doi.org/10.1038/nbt.1544

    Article  CAS  PubMed  Google Scholar 

  98. Mattanovich D, Graf A, Stadlmann J et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Factories 8:29. https://doi.org/10.1186/1475-2859-8-29

    Article  CAS  Google Scholar 

  99. Love KR, Shah KA, Whittaker CA et al (2016) Comparative genomics and transcriptomics of Pichia pastoris. BMC Genomics 17:550. https://doi.org/10.1186/s12864-016-2876-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuberl A, Schneider J, Thallinger GG et al (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154:312–320. https://doi.org/10.1016/j.jbiotec.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  101. Valli M, Tatto NE, Peymann A et al (2016) Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function. FEMS Yeast Res 16. https://doi.org/10.1093/femsyr/fow051

    Article  CAS  PubMed  Google Scholar 

  102. Sturmberger L, Chappell T, Geier M et al (2016) Refined Pichia pastoris reference genome sequence. J Biotechnol 235:121–131. https://doi.org/10.1016/j.jbiotec.2016.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ciofalo V, Barton N, Kreps J et al (2006) Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil. Regul Toxicol Pharmacol 45:1–8. https://doi.org/10.1016/j.yrtph.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  104. Thompson CA (2010) FDA approves kallikrein inhibitor to treat hereditary angioedema. Am J Health Syst Pharm 67:93

    Article  PubMed  Google Scholar 

  105. Coughlan AY, Hanson SJ, Byrne KP, Wolfe KH (2016) Centromeres of the yeast Komagataella phaffii (Pichia pastoris) have a simple inverted-repeat structure. Genome Biol Evol 8:2482–2492. https://doi.org/10.1093/gbe/evw178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee CC, Williams TG, Wong DWS, Robertson GH (2005) An episomal expression vector for screening mutant gene libraries in Pichia pastoris. Plasmid 54:80–85. https://doi.org/10.1016/j.plasmid.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  107. Uchima CA, Arioka M (2012) Expression and one-step purification of recombinant proteins using an alternative episomal vector for the expression of N-tagged heterologous proteins in Pichia pastoris. Biosci Biotechnol Biochem 76:368–371. https://doi.org/10.1271/bbb.110628

    Article  CAS  PubMed  Google Scholar 

  108. Liachko I, Dunham MJ (2014) An autonomously replicating sequence for use in a wide range of budding yeasts. FEMS Yeast Res 14:364–367. https://doi.org/10.1111/1567-1364.12123

    Article  CAS  PubMed  Google Scholar 

  109. Camattari A, Goh A, Yip LY et al (2016) Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb Cell Factories 15:139. https://doi.org/10.1186/s12934-016-0540-5

    Article  CAS  Google Scholar 

  110. Mattanovich D, Sauer M, Gasser B (2017) Industrial microorganisms: Pichia pastoris. In: Industrial biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 687–714

    Google Scholar 

  111. Naatsaari L, Mistlberger B, Ruth C et al (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7:e39720. https://doi.org/10.1371/journal.pone.0039720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jacobs PP, Geysens S, Vervecken W et al (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70. https://doi.org/10.1038/nprot.2008.213

    Article  CAS  PubMed  Google Scholar 

  113. Prielhofer R, Barrero JJ, Steuer S et al (2017) GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst Biol 11:123. https://doi.org/10.1186/s12918-017-0492-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Obst U, Lu TK, Sieber V (2017) A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth Biol 6:1016–1025. https://doi.org/10.1021/acssynbio.6b00337

    Article  CAS  PubMed  Google Scholar 

  115. Soderholm J, Bevis BJ, Glick BS (2001) Vector for pop-in/pop-out gene replacement in Pichia pastoris. Biotechniques 31:306–310

    Article  CAS  PubMed  Google Scholar 

  116. Sears IB, O’Connor J, Rossanese OW, Glick BS (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14:783–790. https://doi.org/10.1002/(SICI)1097-0061(19980615)14:8<783::AID-YEA272>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  117. Sunga AJ, Cregg JM (2004) The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene 330:39–47. https://doi.org/10.1016/j.gene.2003.12.015

    Article  CAS  PubMed  Google Scholar 

  118. Du M, Battles MB, Nett JH (2012) A color-based stable multi-copy integrant selection system for Pichia pastoris using the attenuated ADE1 and ADE2 genes as auxotrophic markers. Bioeng Bugs 3:32–37. https://doi.org/10.4161/bbug.3.1.17936

    Article  PubMed  Google Scholar 

  119. Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259. https://doi.org/10.1385/MB:31:3:245

    Article  CAS  PubMed  Google Scholar 

  120. Couderc R, Baratti J (1980) Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric Biol Chem 44:2279–2289. https://doi.org/10.1080/00021369.1980.10864320

    Article  CAS  Google Scholar 

  121. Inan M, Meagher MM (2001) Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng 92:585–589

    Article  CAS  PubMed  Google Scholar 

  122. Cregg JM, Madden KR, Barringer KJ et al (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hasslacher M, Schall M, Hayn M et al (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif 11:61–71. https://doi.org/10.1006/prep.1997.0765

    Article  CAS  PubMed  Google Scholar 

  124. Schotte P, Dewerte I, De Groeve M et al (2016) Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-l-homoserine at methionine residues when methanol is used as the sole carbon source. Microb Cell Factories 15:98. https://doi.org/10.1186/s12934-016-0499-2

    Article  CAS  Google Scholar 

  125. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270. https://doi.org/10.1002/yea.1208

    Article  CAS  PubMed  Google Scholar 

  126. Tschopp JF, Brust PF, Cregg JM et al (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876. https://doi.org/10.1093/nar/15.9.3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shen S, Sulter G, Jeffries TW, Cregg JM (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93–102

    Article  CAS  PubMed  Google Scholar 

  128. Prielhofer R, Maurer M, Klein J et al (2013) Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Factories 12:5. https://doi.org/10.1186/1475-2859-12-5

    Article  CAS  Google Scholar 

  129. Payne WE, Gannon PM, Kaiser CA (1995) An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product. Gene 163:19–26

    Article  CAS  PubMed  Google Scholar 

  130. Ahn J, Hong J, Park M et al (2009) Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl Environ Microbiol 75:3528–3534. https://doi.org/10.1128/AEM.02913-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cregg JM, Tolstorukov II (2012) P. pastoris ADH promoter and use thereof to direct expression of proteins. US Patent 8222386 B2. 2

    Google Scholar 

  132. Stadlmayr G, Mecklenbrauker A, Rothmuller M et al (2010) Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 150:519–529. https://doi.org/10.1016/j.jbiotec.2010.09.957

    Article  CAS  PubMed  Google Scholar 

  133. Kern A, Hartner FS, Freigassner M et al (2007) Pichia pastoris “just in time” alternative respiration. Microbiology 153:1250–1260. https://doi.org/10.1099/mic.0.2006/001404-0

    Article  CAS  PubMed  Google Scholar 

  134. Waterham HR, Digan ME, Koutz PJ et al (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44

    Article  CAS  PubMed  Google Scholar 

  135. Baumann K, Maurer M, Dragosits M et al (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100:177–183. https://doi.org/10.1002/bit.21763

    Article  CAS  PubMed  Google Scholar 

  136. Periyasamy S, Govindappa N, Sreenivas S, Sastry K (2013) Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins. Protein Expr Purif 92:128–133. https://doi.org/10.1016/j.pep.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  137. Ahn J, Hong J, Lee H et al (2007) Translation elongation factor 1-alpha gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. Appl Microbiol Biotechnol 74:601–608. https://doi.org/10.1007/s00253-006-0698-6

    Article  CAS  PubMed  Google Scholar 

  138. Ata Ö, Prielhofer R, Gasser B et al (2017) Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris. Biotechnol Bioeng 114(10):2319–2327. https://doi.org/10.1002/bit.26363

    Article  CAS  PubMed  Google Scholar 

  139. Portela RMC, Vogl T, Kniely C et al (2017) Synthetic core promoters as universal parts for fine-tuning expression in different yeast species. ACS Synth Biol 6:471–484. https://doi.org/10.1021/acssynbio.6b00178

    Article  CAS  PubMed  Google Scholar 

  140. Vogl T, Ruth C, Pitzer J et al (2014) Synthetic core promoters for Pichia pastoris. ACS Synth Biol 3:188–191. https://doi.org/10.1021/sb400091p

    Article  CAS  PubMed  Google Scholar 

  141. Hartner FS, Ruth C, Langenegger D et al (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36:e76. https://doi.org/10.1093/nar/gkn369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Öztürk S, Gündüz-Ergün B, Çalık P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101(20):7459–7475. https://doi.org/10.1007/s00253-017-8487-y

    Article  CAS  PubMed  Google Scholar 

  143. Liu H, Tan X, Russell KA et al (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 270:10940–10951

    Article  CAS  PubMed  Google Scholar 

  144. Vogl T, Sturmberger L, Kickenweiz T et al (2016) A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol 5:172–186. https://doi.org/10.1021/acssynbio.5b00199

    Article  CAS  PubMed  Google Scholar 

  145. Passoth V, Hahn-Hägerdal B (2000) Production of a heterologous endo-1,4-β-xylanase in the yeast Pichia stipitis with an O2-regulated promoter. Enzym Microb Technol 26:781–784. https://doi.org/10.1016/S0141-0229(00)00171-X

    Article  CAS  Google Scholar 

  146. Chien L-J, Lee C-K (2005) Expression of bacterial hemoglobin in the yeast, Pichia pastoris, with a low O2-induced promoter. Biotechnol Lett 27:1491–1497. https://doi.org/10.1007/s10529-005-1324-x

    Article  CAS  PubMed  Google Scholar 

  147. Camattari A, Bianchi MM, Branduardi P et al (2007) Induction by hypoxia of heterologous-protein production with the KlPDC1 promoter in yeasts. Appl Environ Microbiol 73:922–929. https://doi.org/10.1128/AEM.01764-06

    Article  CAS  PubMed  Google Scholar 

  148. Koller A, Valesco J, Subramani S (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast 16:651–656. https://doi.org/10.1002/(SICI)1097-0061(200005)16:7<651::AID-YEA580>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  149. Huang C-J, Damasceno LM, Anderson KA et al (2011) A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Appl Microbiol Biotechnol 90:235–247. https://doi.org/10.1007/s00253-011-3118-5

    Article  CAS  PubMed  Google Scholar 

  150. Laroche Y, Storme V, De Meutter J et al (1994) High-level secretion and very efficient isotopic Labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Nat Biotechnol 12:1119–1124

    Article  CAS  Google Scholar 

  151. Weiss HM, Haase W, Michel H, Reilander H (1995) Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett 377:451–456

    Article  CAS  PubMed  Google Scholar 

  152. Ha SH, Park JJ, Kim JW et al (2001) Molecular cloning and high-level expression of G2 protein of hantaan (HTN) virus 76-118 strain in the yeast Pichia pastoris KM71. Virus Genes 22:167–173

    Article  CAS  PubMed  Google Scholar 

  153. Trujillo LE, Arrieta JG, Dafhnis F et al (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzym Microb Technol 28:139–144

    Article  CAS  Google Scholar 

  154. Yoshimasu MA, Ahn J-K, Tanaka T, Yada RY (2002) Soluble expression and purification of porcine pepsinogen from Pichia pastoris. Protein Expr Purif 25:229–236

    Article  CAS  PubMed  Google Scholar 

  155. Murasugi A, Tohma-Aiba Y (2001) Comparison of three signals for secretory expression of recombinant human midkine in Pichia pastoris. Biosci Biotechnol Biochem 65:2291–2293. https://doi.org/10.1271/bbb.65.2291

    Article  CAS  PubMed  Google Scholar 

  156. Tschopp JF, Sverlow G, Kosson R et al (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris. Nat Biotechnol 5:1305–1308

    Article  CAS  Google Scholar 

  157. Paifer E, Margolles E, Cremata J et al (1994) Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 10:1415–1419. https://doi.org/10.1002/yea.320101104

    Article  CAS  PubMed  Google Scholar 

  158. Kuwae S, Ohyama M, Ohya T et al (2005) Production of recombinant human antithrombin by Pichia pastoris. J Biosci Bioeng 99:264–271. https://doi.org/10.1263/jbb.99.264

    Article  CAS  PubMed  Google Scholar 

  159. Massahi A, Calik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188. https://doi.org/10.1016/j.jtbi.2014.08.048

    Article  CAS  PubMed  Google Scholar 

  160. Massahi A, Calik P (2016) Endogenous signal peptides in recombinant protein production by Pichia pastoris: from in-silico analysis to fermentation. J Theor Biol 408:22–33. https://doi.org/10.1016/j.jtbi.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  161. Liang S, Li C, Ye Y, Lin Y (2013) Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol Lett 35:97–105. https://doi.org/10.1007/s10529-012-1055-8

    Article  CAS  PubMed  Google Scholar 

  162. Khasa YP, Conrad S, Sengul M et al (2011) Isolation of Pichia pastoris PIR genes and their utilization for cell surface display and recombinant protein secretion. Yeast 28:213–226. https://doi.org/10.1002/yea.1832

    Article  CAS  PubMed  Google Scholar 

  163. Govindappa N, Hanumanthappa M, Venkatarangaiah K et al (2014) A new signal sequence for recombinant protein secretion in Pichia pastoris. J Microbiol Biotechnol 24:337–345

    Article  CAS  PubMed  Google Scholar 

  164. Heiss S, Puxbaum V, Gruber C et al (2015) Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology 161:1356–1368. https://doi.org/10.1099/mic.0.000105

    Article  CAS  PubMed  Google Scholar 

  165. Aw R, McKay PF, Shattock RJ, Polizzi KM (2017) Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris. AMB Express 7:70. https://doi.org/10.1186/s13568-017-0372-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nel S, Labuschagne M, Albertyn J (2009) Advances in gene expression in non-conventional yeasts BT—yeast biotechnology: diversity and applications. In: Satyanarayana T, Kunze G (eds) . Springer Netherlands, Dordrecht, pp 369–403

    Chapter  Google Scholar 

  167. Radecka D, Mukherjee V, Mateo RQ et al (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15:1–13. https://doi.org/10.1093/femsyr/fov053

    Article  CAS  Google Scholar 

  168. Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Factories 5:39. https://doi.org/10.1186/1475-2859-5-39

    Article  CAS  Google Scholar 

  169. van Dijk R, Faber KN, Kiel JAKW et al (2000) The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzym Microb Technol 26:793–800. https://doi.org/10.1016/S0141-0229(00)00173-3

    Article  Google Scholar 

  170. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750. https://doi.org/10.1007/s002530000464

    Article  CAS  PubMed  Google Scholar 

  171. Veenhuis M, Kram AM, Kunau WH, Harder W (1990) Excessive membrane development following exposure of the methylotrophic yeast Hansenula polymorpha to oleic acid-containing media. Yeast 6:511–519. https://doi.org/10.1002/yea.320060608

    Article  CAS  Google Scholar 

  172. Baerends RJS, Faber KN, Kram AM et al (2000) A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. J Biol Chem 275:9986–9995. https://doi.org/10.1074/jbc.275.14.9986

    Article  CAS  PubMed  Google Scholar 

  173. Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164. https://doi.org/10.1016/S1567-1356(03)00146-6

    Article  CAS  PubMed  Google Scholar 

  174. van Zutphen T, Baerends RJ, Susanna KA et al (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11:1. https://doi.org/10.1186/1471-2164-11-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Veenhuis M, van der Klei IJ, Titorenko V, Harder W (1992) Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol Lett 100:393–403. https://doi.org/10.1111/j.1574-6968.1992.tb14068.x

    Article  CAS  PubMed  Google Scholar 

  176. Ávila J, Pérez MD, Brito N et al (1995) Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 366:137–142. https://doi.org/10.1016/0014-5793(95)00511-7

    Article  PubMed  Google Scholar 

  177. Brito N, Pérez MD, Perdomo G et al (1999) A set of Hansenula polymorpha integrative vectors to construct lacZ fusions. Appl Microbiol Biotechnol 53:23–29. https://doi.org/10.1007/s002530051609

    Article  CAS  Google Scholar 

  178. Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26:277–284. https://doi.org/10.1016/S0168-6445(02)00100-6

    Article  CAS  PubMed  Google Scholar 

  179. Kunze G, Kang HA, Gellissen G (2009) Hansenula polymorpha (Pichia angusta): biology and applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Netherlands, Dordrecht, pp 47–64

    Chapter  Google Scholar 

  180. Sohn JH, Choi ES, Kim CH et al (1996) A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. J Bacteriol 178:4420–4428. https://doi.org/10.1128/jb.178.15.4420-4428.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190:87–97. https://doi.org/10.1016/S0378-1119(97)00020-6

    Article  CAS  PubMed  Google Scholar 

  182. Janowicz ZA, Melber K, Merckelbach A et al (1991) Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast 7:431–443. https://doi.org/10.1002/yea.320070502

    Article  CAS  PubMed  Google Scholar 

  183. Gatzke R, Weydemann U, Janowicz ZA, Hollenberg CP (1995) Stable multicopy integration of vector sequences in Hansenula polymorpha. Appl Microbiol Biotechnol 43:844–849. https://doi.org/10.1007/BF02431917

    Article  CAS  PubMed  Google Scholar 

  184. Gellissen G, Hollenberg CP, Janowicz ZA (1995) Gene expression in methylotrophic yeasts. Bioprocess Technol 22:195–239

    CAS  PubMed  Google Scholar 

  185. Agaphonov MO, Beburov MY, Ter-Avanesyan MD, Smirnov VN (1995) A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 11:1241–1247. https://doi.org/10.1002/yea.320111304

    Article  CAS  PubMed  Google Scholar 

  186. Machín F, Perdomo G, Pérez MD et al (2001) Evidence for multiple nitrate uptake systems in the yeast Hansenula polymorpha. FEMS Microbiol Lett 194:171–174. https://doi.org/10.1016/S0378-1097(00)00524-3

    Article  PubMed  Google Scholar 

  187. Song H, Li Y, Fang W et al (2003) Development of a set of expression vectors in Hansenula polymorpha. Biotechnol Lett 25:1999–2006. https://doi.org/10.1023/B:BILE.0000004392.87179.29

    Article  CAS  PubMed  Google Scholar 

  188. Agaphonov MO, Trushkina PM, Sohn J-H et al (1999) Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast 15:541–551. https://doi.org/10.1002/(SICI)1097-0061(199905)15:7<541::AID-YEA392>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  189. Heo JH, Hong WK, Cho EY et al (2003) Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res 4:175–184. https://doi.org/10.1016/S1567-1356(03)00150-8

    Article  CAS  PubMed  Google Scholar 

  190. Cox H, Mead D, Sudbery P et al (2000) Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 16:1191–1203. https://doi.org/10.1002/1097-0061(20000930)16:13<1191::AID-YEA589>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  191. Klabunde J, Diesel A, Waschk D et al (2002) Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58:797–805. https://doi.org/10.1007/s00253-002-0957-0

    Article  CAS  PubMed  Google Scholar 

  192. Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4:185–193. https://doi.org/10.1016/S1567-1356(03)00148-X

    Article  CAS  PubMed  Google Scholar 

  193. Liu Y, Li Y, Liu L et al (2005) Design of vectors for efficient integration and transformation in Hansenula polymorpha. Biotechnol Lett 27:1529–1534. https://doi.org/10.1007/s10529-005-1469-7

    Article  CAS  PubMed  Google Scholar 

  194. Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2005) Wide-range integrative expression vectors for fungi, based on ribosomal DNA elements. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 273–286

    Chapter  Google Scholar 

  195. Ilgen C, Lin-Cereghino J, Cregg JM (2005) Pichia pastoris. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 143–162

    Chapter  Google Scholar 

  196. Roggenkamp R, Hansen H, Eckart M et al (1986) Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet MGG 202:302–308. https://doi.org/10.1007/BF00331655

    Article  CAS  Google Scholar 

  197. Merckelbach A, Gödecke S, Janowicz ZA, Hollenberg CP (1993) Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl Microbiol Biotechnol 40:361–364. https://doi.org/10.1007/BF00170393

    Article  CAS  PubMed  Google Scholar 

  198. Agaphonov MO, Poznyakovski AI, Bogdanova AI, Ter-Avanesyan MD (1994) I. Yeast sequencing reports. Isolation and characterization of the LEU2 gene of Hansenula polymorpha. Yeast 10:509–513. https://doi.org/10.1002/yea.320100410

    Article  CAS  PubMed  Google Scholar 

  199. Bogdanova AI, Agaphonov MO, Ter-Avanesyan MD (1995) Plasmid reorganization during integrative transformation in Hansenula polymorpha. Yeast 11:343–353. https://doi.org/10.1002/yea.320110407

    Article  CAS  PubMed  Google Scholar 

  200. Zurek C, Kubis E, Keup P et al (1996) Production of two aprotinin variants in Hansenula polymorpha. Process Biochem 31:679–689. https://doi.org/10.1016/S0032-9592(96)00018-0

    Article  CAS  Google Scholar 

  201. Kang HA, Hong WK, Sohn JH et al (2001) Molecular characterization of the actin-encoding gene and the use of its promoter for a dominant selection system in the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 55:734–741. https://doi.org/10.1007/s002530100605

    Article  CAS  PubMed  Google Scholar 

  202. Rezaee A (2003) Construction of a suitable vector for Lacz gene expression in Hansunela polymorpha. Pakistan J Biol Sci 6:1361–1364. https://doi.org/10.3923/pjbs.2003.1361.1364

    Article  Google Scholar 

  203. Kang HA, Gellissen G (2005) Hansenula polymorpha. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG

    Google Scholar 

  204. Suckow M, Gellissen G (2005) The expression platform based on H. polymorpha strain RB11 and its derivatives—history, status and perspectives. In: Gellissen G (ed) Hansenula polymorpha. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 105–123

    Chapter  Google Scholar 

  205. Baerends RJS, Sulter GJ, Jeffries TW et al (2002) Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42. https://doi.org/10.1002/yea.805

    Article  CAS  PubMed  Google Scholar 

  206. Phongdara A, Merckelbach A, Keup P et al (1998) Cloning and characterization of the gene encoding a repressible acid phosphatase (PHO1) from the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 50:77–84. https://doi.org/10.1007/s002530051259

    Article  CAS  PubMed  Google Scholar 

  207. Brito N, Avila J, Perez MD et al (1996) The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and coordinately regulated. Biochem J 317:89–95. https://doi.org/10.1042/bj3170089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Pérez MD, González C, Ávila J et al (1997) The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem J 321:397–403. https://doi.org/10.1042/bj3210397

    Article  PubMed  PubMed Central  Google Scholar 

  209. Alamäe T, Pärn P, Viigand K, Karp H (2003) Regulation of the Hansenula polymorpha maltase gene promoter in H. polymorpha and Saccharomyces cerevisiae. FEMS Yeast Res 4:165–173. https://doi.org/10.1016/S1567-1356(03)00142-9

    Article  CAS  PubMed  Google Scholar 

  210. Amuel C, Gellissen G, Hollenberg CP, Suckow M (2000) Analysis of heat shock promoters in Hansenula polymorpha: the TPS1 promoter, a novel element for heterologous gene expression. Biotechnol Bioprocess Eng 5:247–252. https://doi.org/10.1007/BF02942181

    Article  CAS  Google Scholar 

  211. Kang HA, Kang W, Hong W-K et al (2001) Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 76:175–185. https://doi.org/10.1002/bit.1157

    Article  CAS  PubMed  Google Scholar 

  212. Weydemann U, Keup P, Piontek M et al (1995) High-level secretion of hirudin by Hansenula polymorpha — authentic processing of three different preprohirudins. Appl Microbiol Biotechnol 44:377–385. https://doi.org/10.1007/BF00169932

    Article  CAS  PubMed  Google Scholar 

  213. Kumari A, Baronian K, Kunze G, Gupta R (2015) Extracellular expression of YlLip11 with a native signal peptide from Yarrowia lipolytica MSR80 in three different yeast hosts. Protein Expr Purif 110:138–144. https://doi.org/10.1016/j.pep.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  214. Eilert E, Rolf T, Heumaier A et al (2013) Improved processing of secretory proteins in Hansenula polymorpha by sequence variation near the processing site of the alpha mating factor prepro sequence. J Biotechnol 167:94–100. https://doi.org/10.1016/j.jbiotec.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  215. Qian W, Aguilar F, Wang T, Qiu B (2013) Secretion of truncated recombinant rabies virus glycoprotein with preserved antigenic properties using a co-expression system in Hansenula polymorpha. J Microbiol 51:234–240. https://doi.org/10.1007/s12275-013-2337-0

    Article  CAS  PubMed  Google Scholar 

  216. Talebkhan Y, Samadi T, Samie A et al (2016) Expression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha. Iran J Microbiol 8:21–28

    PubMed  PubMed Central  Google Scholar 

  217. Sohn MJ, Oh D-B, Kim EJ et al (2012) HpYPS1 and HpYPS7 encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast Hansenula polymorpha. Yeast 29:1–16. https://doi.org/10.1002/yea.1912

    Article  CAS  PubMed  Google Scholar 

  218. Cheon SA, Jung J, Choo JH et al (2014) Characterization of putative glycosylphosphatidylinositol-anchoring motifs for surface display in the methylotrophic yeast Hansenula polymorpha. Biotechnol Lett 36:2085–2094. https://doi.org/10.1007/s10529-014-1582-6

    Article  CAS  PubMed  Google Scholar 

  219. Kim S-Y, Sohn J-H, Pyun Y-R, Choi E-S (2002) A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast 19:1153–1163. https://doi.org/10.1002/yea.911

    Article  CAS  PubMed  Google Scholar 

  220. Kunze G, Gaillardin C, Czernicka M et al (2014) The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest. Biotechnol Biofuels 7:66. https://doi.org/10.1186/1754-6834-7-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Malak A, Baronian K, Kunze G (2016) Blastobotrys (Arxula) adeninivorans: a promising alternative yeast for biotechnology and basic research. Yeast 33:535–547. https://doi.org/10.1002/yea.3180

    Article  CAS  PubMed  Google Scholar 

  222. Middelhoven WJ, Niet MCH-T, Rij NJWK-V (1984) Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy. Antonie Van Leeuwenhoek 50:369–378. https://doi.org/10.1007/BF00394651

    Article  CAS  PubMed  Google Scholar 

  223. Böer E, Breuer FS, Weniger M et al (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92:105–114. https://doi.org/10.1007/s00253-011-3320-5

    Article  CAS  PubMed  Google Scholar 

  224. Wartmann T, Krüger A, Adler K et al (1995) Temperature-dependent dimorphism of the yeast Arxula adeninivorans Ls3. Antonie Van Leeuwenhoek 68:215–223. https://doi.org/10.1007/BF00871818

    Article  CAS  PubMed  Google Scholar 

  225. Wartmann T, Erdmann J, Kunze I, Kunze G (2000) Morphology-related effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3. Arch Microbiol 173:253–261. https://doi.org/10.1007/s002030000137

    Article  CAS  PubMed  Google Scholar 

  226. Wartmann T, Stephan UW, Bube I et al (2002) Post-translational modifications of the AFET3 gene product-a component of the iron transport system in budding cells and mycelia of the yeast Arxula adeninivorans. Yeast 19:849–862. https://doi.org/10.1002/yea.880

    Article  CAS  PubMed  Google Scholar 

  227. Kunze G, Kunze I (1996) Arxula adeninivorans. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 389–409

    Chapter  Google Scholar 

  228. Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33:157–163. https://doi.org/10.1007/s002940050322

    Article  PubMed  Google Scholar 

  229. Wartmann T, Böer E, Pico AH et al (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369. https://doi.org/10.1016/S1567-1356(02)00086-7

    Article  CAS  PubMed  Google Scholar 

  230. Wartmann T, Stoltenburg R, Böer E et al (2003) The ALEU2 gene—a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3:223–232. https://doi.org/10.1016/S1567-1356(02)00190-3

    Article  CAS  PubMed  Google Scholar 

  231. Terentiev Y, Pico AH, Böer E et al (2004) A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements. J Ind Microbiol Biotechnol 31:223–228. https://doi.org/10.1007/s10295-004-0142-9

    Article  CAS  PubMed  Google Scholar 

  232. Böer E, Piontek M, Kunze G (2009) Xplor® 2—an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 84:583–594. https://doi.org/10.1007/s00253-009-2167-5

    Article  CAS  PubMed  Google Scholar 

  233. Wartmann T, Rösel H, Kunze I et al (1998) AILV1 gene from the yeast Arxula adeninivorans LS3—a new selective transformation marker. Yeast 14:1017–1025. https://doi.org/10.1002/(SICI)1097-0061(199808)14:11<1017::AID-YEA314>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  234. Wartmann T, Kunze G (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54:619–624. https://doi.org/10.1007/s002530000444

    Article  CAS  PubMed  Google Scholar 

  235. Müller S, Sandal T, Kamp-Hansen P et al (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283. https://doi.org/10.1002/(SICI)1097-0061(1998100)14:14<1267::AID-YEA327>3.0.CO;2-2

    Article  PubMed  Google Scholar 

  236. Hahn T, Tag K, Riedel K et al (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21:2078–2085. https://doi.org/10.1016/j.bios.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  237. Wartmann T, Bellebna C, Böer E et al (2003) The constitutive AHSB4 promoter—a novel component of the Arxula adeninivorans-based expression platform. Appl Microbiol Biotechnol 62:528–535. https://doi.org/10.1007/s00253-003-1323-6

    Article  CAS  PubMed  Google Scholar 

  238. El Fiki A, El Metabteb G, Bellebna C et al (2007) The Arxula adeninivorans ATAL gene encoding transaldolase-gene characterization and biotechnological exploitation. Appl Microbiol Biotechnol 74:1292–1299. https://doi.org/10.1007/s00253-006-0785-8

    Article  CAS  PubMed  Google Scholar 

  239. Steinborn G, Gellissen G, Kunze G (2005) Assessment of Hansenula polymorpha and Arxula adeninivorans-derived rDNA-targeting elements for the design of Arxula adeninivorans expression vectors. FEMS Yeast Res 5:1047–1054. https://doi.org/10.1016/j.femsyr.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  240. Steinborn G, Wartmann T, Gellissen G, Kunze G (2007) Construction of an Arxula adeninivorans host-vector system based on trp1 complementation. J Biotechnol 127:392–401. https://doi.org/10.1016/j.jbiotec.2006.07.026

    Article  CAS  PubMed  Google Scholar 

  241. Steinborn G, Gellissen G, Kunze G (2007) A novel vector element providing multicopy vector integration in Arxula adeninivorans. FEMS Yeast Res 7:1197–1205. https://doi.org/10.1111/j.1567-1364.2007.00280.x

    Article  CAS  PubMed  Google Scholar 

  242. Steinborn G, Böer E, Scholz A et al (2006) Application of a wide-range yeast vector (CoMed™) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts. Microb Cell Factories 5:33. https://doi.org/10.1186/1475-2859-5-33

    Article  CAS  Google Scholar 

  243. Álvaro-Benito M, Fernández-Lobato M, Baronian K, Kunze G (2013) Assessment of Schwanniomyces occidentalis as a host for protein production using the wide-range Xplor®2 expression platform. Appl Microbiol Biotechnol 97:4443–4456. https://doi.org/10.1007/s00253-012-4527-9

    Article  CAS  PubMed  Google Scholar 

  244. Böer E, Steinborn G, Matros A et al (2007) Production of interleukin-6 in Arxula adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae by applying the wide-range yeast vector (CoMed™) system to simultaneous comparative assessment. FEMS Yeast Res 7:1181–1187. https://doi.org/10.1111/j.1567-1364.2007.00254.x

    Article  CAS  PubMed  Google Scholar 

  245. Böer E, Wartmann T, Luther B et al (2004) Characterization of the AINV gene and the encoded invertase from the dimorphic yeast Arxula adeninivorans. Antonie Van Leeuwenhoek 86:121–134. https://doi.org/10.1023/B:ANTO.0000036135.69810.df

    Article  PubMed  Google Scholar 

  246. Böer E, Mock HP, Bode R et al (2005) An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme. Yeast 22:523–535. https://doi.org/10.1002/yea.1230

    Article  CAS  PubMed  Google Scholar 

  247. Kaur P, Lingner A, Singh B et al (2007) APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity. Antonie Van Leeuwenhoek 91:45–55. https://doi.org/10.1007/s10482-006-9094-6

    Article  CAS  PubMed  Google Scholar 

  248. Böer E, Bode R, Mock H-P et al (2009) Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 26:323–337. https://doi.org/10.1002/yea.1669

    Article  CAS  PubMed  Google Scholar 

  249. Bischoff F, Litwińska K, Cordes A et al (2015) Three new cutinases from the yeast Arxula adeninivorans that are suitable for biotechnological applications. Appl Environ Microbiol 81:5497–5510. https://doi.org/10.1128/AEM.00894-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Minocha N, Kaur P, Satyanarayana T, Kunze G (2007) Acid phosphatase production by recombinant Arxula adeninivorans. Appl Microbiol Biotechnol 76:387–393. https://doi.org/10.1007/s00253-007-1021-x

    Article  CAS  PubMed  Google Scholar 

  251. Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–177. https://doi.org/10.1002/yea.2954

    Article  CAS  PubMed  Google Scholar 

  252. Spohner SC, Schaum V, Quitmann H, Czermak P (2016) Kluyveromyces lactis: an emerging tool in biotechnology. J Biotechnol 222:104–116. https://doi.org/10.1016/j.jbiotec.2016.02.023

    Article  CAS  PubMed  Google Scholar 

  253. Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis-a review. Appl Microbiol Biotechnol 41:1–3. https://doi.org/10.1007/BF00166072

    Article  Google Scholar 

  254. Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44. https://doi.org/10.1038/nature02579

    Article  PubMed  Google Scholar 

  255. Chen XJ (1996) Low- and high-copy-number yeast Kluyveromyces lactis shuttle vectors for replication in the budding. Gene 172:131–136

    Article  CAS  PubMed  Google Scholar 

  256. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390

    CAS  PubMed  PubMed Central  Google Scholar 

  257. van Ooyen AJJ, Dekker P, Huang M et al (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392. https://doi.org/10.1111/j.1567-1364.2006.00049.x

    Article  CAS  PubMed  Google Scholar 

  258. Chen XJ, Saliola M, Falcone C et al (1986) Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res 14:4471–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bianchi MM, Falcone C, Re CX et al (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKD1. Curr Genet 12:185–192. https://doi.org/10.1007/BF00436877

    Article  CAS  Google Scholar 

  260. Bianchi MM (1992) Site-specific recombination of the circular 2 microns-like plasmid pKD1 requires integrity of the recombinase gene A and of the partitioning genes B and C. J Bacteriol 174:6703–6706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Fleer R, Chen XJ, Amellal N et al (1991) High-level secretion of correctly processed recombinant human interleukin-1 beta in Kluyveromyces lactis. Gene 107:285–295. https://doi.org/10.1016/0378-1119(91)90329-A

    Article  CAS  PubMed  Google Scholar 

  262. Hsieh H-P, Da Silva NA (1998) Partial-pKD1 plasmids provide enhanced structural stability for heterologous protein production in Kluyveromyces lactis. Appl Microbiol Biotechnol 49:411–416. https://doi.org/10.1007/s002530051191

    Article  CAS  PubMed  Google Scholar 

  263. Morlino GB, Tizzani L, Fleer R et al (1999) Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Appl Environ Microbiol 65:4808–4813

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) The host range of the pKD1-derived plasmids in yeast. Curr Genet 16:95–98. https://doi.org/10.1007/BF00393401

    Article  CAS  PubMed  Google Scholar 

  265. Das S, Hollenberg CP (1982) A high-frequency transformation system for the yeast Kluyveromyces lactis. Curr Genet 6:123–128. https://doi.org/10.1007/BF00435211

    Article  CAS  PubMed  Google Scholar 

  266. Fabiani L, Aragona M, Frontali L (1990) Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis. Yeast 6:69–76. https://doi.org/10.1002/yea.320060108

    Article  CAS  PubMed  Google Scholar 

  267. Sreekrishna K, Webster TD, Dickson RC (1984) Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn905. Gene 28:73–81. https://doi.org/10.1016/0378-1119(84)90089-1

    Article  CAS  PubMed  Google Scholar 

  268. Das S, Breunig KD, Hollenberg CP (1985) A positive regulatory element is involved in the induction of the beta-galactosidase gene from Kluyveromyces lactis. EMBO J 4:793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Strasser AWM, Selk R, Dohmen RJ et al (1989) Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. Eur J Biochem 184:699–706. https://doi.org/10.1111/j.1432-1033.1989.tb15069.x

    Article  CAS  PubMed  Google Scholar 

  270. Bergkamp RJM, Kool IM, Geerse RH, Planta RJ (1992) Multiple-copy integration of the -galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curt Genet 21:365–370. https://doi.org/10.1007/BF00351696

    Article  CAS  Google Scholar 

  271. Heus JJ, Zonneveld BJM, Steensma HY, Van den Berg JA (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18:517–522. https://doi.org/10.1007/BF00327022

    Article  CAS  PubMed  Google Scholar 

  272. van der Vlugt-Bergmans CJB, van Ooyen AJJ (1999) Expression cloning in Kluyveromyces lactis. Biotechnol Tech 13:87–92. https://doi.org/10.1023/A:1008864118362

    Article  Google Scholar 

  273. Prior C, Mamessier P, Fukuhara H et al (1993) The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol 13:3882–3889. https://doi.org/10.1128/MCB.13.7.3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Iwata T, Tanaka R, Suetsugu M et al (2004) Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis. Biotechnol Lett 26:1803–1808. https://doi.org/10.1007/s10529-004-4614-9

    Article  CAS  PubMed  Google Scholar 

  275. van den Berg JA, van der Laken KJ, van Ooyen AJJ et al (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8:135–139. https://doi.org/10.1038/nbt0290-135

    Article  Google Scholar 

  276. Mustilli AC, Izzo E, Houghton M, Galeotti CL (1999) Comparison of secretion of a hepatitis C virus glycoprotein in Saccharomyces cerevisiae and Kluyveromyces lactis. Res Microbiol 150:179–187. https://doi.org/10.1016/S0923-2508(99)80034-5

    Article  CAS  PubMed  Google Scholar 

  277. Rossolini GM, Riccio ML, Gallo E, Galeotti CL (1992) Kluyveromyces lactis rDNA as a target for multiple integration by homologous recombination. Gene 119:75–81. https://doi.org/10.1016/0378-1119(92)90068-Z

    Article  CAS  PubMed  Google Scholar 

  278. Colussi PA, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71:7092–7098. https://doi.org/10.1128/AEM.71.11.7092-7098.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Dickson RC, Markin JS (1980) Physiological studies of β-galactosidase induction in Kluyveromyces lactis. J Bacteriol 142:777–785

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Dickson RC, Markin JS (1978) Molecular cloning and expression in E. coli of a yeast gene coding for beta-galactosidase. Cell 15:123–130

    Article  CAS  PubMed  Google Scholar 

  281. Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136. https://doi.org/10.1016/j.fgb.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  282. Tokunaga M, Ishibashi M, Tatsuda D, Tokunaga H (1997) Secretion of mouse α-amylase from Kluyveromyces lactis. Yeast 13:699–706

    Article  CAS  PubMed  Google Scholar 

  283. Rocha SN, Abrahao-Neto J, Cerdan ME et al (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Factories 9:4. https://doi.org/10.1186/1475-2859-9-4

    Article  CAS  Google Scholar 

  284. Rocha SN, Abrahão-Neto J, Cerdán ME et al (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Factories 9:4. https://doi.org/10.1186/1475-2859-9-4

    Article  CAS  Google Scholar 

  285. Madhavan A, Sukumaran RK (2015) Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochem Eng J 102:31–37. https://doi.org/10.1016/j.bej.2015.03.008

    Article  CAS  Google Scholar 

  286. Fermiñán E, Domínguez A (1998) Heterologous protein secretion directed by a repressible acid phosphatase system of Kluyveromyces lactis: characterization of upstream region-activating sequences in the KlPHO5 gene. Appl Environ Microbiol 64:2403–2408

    PubMed  PubMed Central  Google Scholar 

  287. Madhavan A, Sukumaran RK (2014) Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis. Bioresour Technol 165:302–308. https://doi.org/10.1016/j.biortech.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  288. Amore A, Amoresano A, Birolo L et al (2012) A family GH51 α-l-arabinofuranosidase from Pleurotus ostreatus: identification, recombinant expression and characterization. Appl Microbiol Biotechnol 94:995–1006. https://doi.org/10.1007/s00253-011-3678-4

    Article  CAS  PubMed  Google Scholar 

  289. Barth G, Gaillardin C (1996) Yarrowia lipolytica BT—nonconventional yeasts in biotechnology: a handbook. In: Wolf K (ed) . Springer Berlin Heidelberg, Berlin, Heidelberg, pp 313–388

    Chapter  Google Scholar 

  290. Groenewald M, Boekhout T, Neuveglise C et al (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40:187–206. https://doi.org/10.3109/1040841X.2013.770386

    Article  CAS  PubMed  Google Scholar 

  291. Zinjarde SS (2014) Food-related applications of Yarrowia lipolytica. Food Chem 152:1–10. https://doi.org/10.1016/j.foodchem.2013.11.117

    Article  CAS  PubMed  Google Scholar 

  292. Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29:409–418. https://doi.org/10.1002/yea.2921

    Article  CAS  PubMed  Google Scholar 

  293. Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865. https://doi.org/10.1007/s00253-009-2156-8

    Article  CAS  PubMed  Google Scholar 

  294. Xue Z, Sharpe PL, Hong S-P et al (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740

    Article  CAS  PubMed  Google Scholar 

  295. Grenfell-Lee D, Zeller S, Cardoso R, Pucaj K (2014) The safety of beta-carotene from Yarrowia lipolytica. Food Chem Toxicol 65:1–11. https://doi.org/10.1016/j.fct.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  296. Tiels P, Baranova E, Piens K et al (2012) A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 30:1225–1231

    Article  CAS  PubMed  Google Scholar 

  297. Pignède G, Wang H-J, Fudalej F et al (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289. https://doi.org/10.1128/AEM.66.8.3283-3289.2000

    Article  PubMed  PubMed Central  Google Scholar 

  298. Davidow LSDJ (1984) Process for transformation of Yarrowia lipolytica. US Patent Application US4880741

    Google Scholar 

  299. Gaillardin C, Heslot HRA (1984) Vecteurs de transformation de la levure Yarrowia lipolytica, procédé de transformation et levure transformée. French Patent Application FR2566424

    Google Scholar 

  300. Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99:4559–4577. https://doi.org/10.1007/s00253-015-6624-z

    Article  CAS  PubMed  Google Scholar 

  301. Boisramé A, Kabani M, Beckerich J-M et al (1998) Interaction of Kar2p and Sls1p is required for efficient co-translational translocation of secreted proteins in the yeast Yarrowia lipolytica. J Biol Chem 273:30903–30908. https://doi.org/10.1074/jbc.273.47.30903

    Article  PubMed  Google Scholar 

  302. Kim JW, Park TJ, Ryu DD, Kim JY (2000) High cell density culture of Yarrowia lipolytica using a one-step feeding process. Biotechnol Prog 16:657–660. https://doi.org/10.1021/bp000037n

    Article  CAS  PubMed  Google Scholar 

  303. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  PubMed  Google Scholar 

  304. Liu L, Alper HS (2014) Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc 2:e00652–e00614. https://doi.org/10.1128/genomeA.00652-14

    Article  PubMed  PubMed Central  Google Scholar 

  305. Fournier P, Abbas A, Chasles M et al (1993) Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A 90:4912–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Matsuoka M, Matsubara M, Daidoh H et al (1993) Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Mol Gen Genet MGG 237:327–333. https://doi.org/10.1007/BF00279435

    Article  CAS  PubMed  Google Scholar 

  307. Vernis L, Abbas A, Chasles M et al (1997) An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica. Mol Cell Biol 17:1995–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Liu L, Otoupal P, Pan A, Alper HS (2014) Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function. FEMS Yeast Res 14:1124–1127. https://doi.org/10.1111/1567-1364.12201

    Article  CAS  PubMed  Google Scholar 

  309. Richard G-F, Kerrest A, Lafontaine I, Dujon B (2005) Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol Biol Evol 22:1011–1023. https://doi.org/10.1093/molbev/msi083

    Article  CAS  PubMed  Google Scholar 

  310. Verbeke J, Beopoulos A, Nicaud J-M (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35:571–576. https://doi.org/10.1007/s10529-012-1107-0

    Article  CAS  PubMed  Google Scholar 

  311. Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77:7905–7914. https://doi.org/10.1128/AEM.05763-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Nicaud JM, Fabre E, Gaillardin C (1989) Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16:253–260

    Article  CAS  PubMed  Google Scholar 

  313. Gaillardin C, Ribet AM (1987) LEU2 directed expression of beta-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr Genet 11:369–375

    Article  CAS  PubMed  Google Scholar 

  314. Fickers P, Le Dall MT, Gaillardin C et al (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55:727–737

    Article  CAS  PubMed  Google Scholar 

  315. Le Dall MT, Nicaud JM, Gaillardin C (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26:38–44

    Article  PubMed  Google Scholar 

  316. Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase of Candida lipolytica. Agric Biol Chem 40:1087–1092. https://doi.org/10.1080/00021369.1976.10862177

    Article  CAS  Google Scholar 

  317. Ogrydziak DM, Scharf SJ (1982) Alkaline extracellular protease produced by Saccharomycopsis lipolytica CX161-1B. J Gen Microbiol 128:1225–1234. https://doi.org/10.1099/00221287-128-6-1225

    Article  CAS  PubMed  Google Scholar 

  318. Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1994) Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 14:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Davidow LS, DeZeeuw JR, Franke AE (1990) Expression and secretion of heterologous proteins by Yarrowia lipolytica transformants. US Patent ​4937189A

    Google Scholar 

  320. Nicaud JM, Fournier P, La Bonnardiere C et al (1991) Use of ars18 based vectors to increase protein production in Yarrowia lipolytica. J Biotechnol 19:259–270

    Article  CAS  PubMed  Google Scholar 

  321. Hamsa PV, Chattoo BB (1994) Cloning and growth-regulated expression of the gene encoding the hepatitis B virus middle surface antigen in Yarrowia lipolytica. Gene 143:165–170

    Article  CAS  PubMed  Google Scholar 

  322. Madzak C, Treton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2:207–216

    CAS  PubMed  Google Scholar 

  323. Nicaud J-M, Madzak C, van den Broek P et al (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2:371–379

    CAS  PubMed  Google Scholar 

  324. Dominguez A, Ferminan E, Sanchez M et al (1998) Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 1:131–142

    CAS  PubMed  Google Scholar 

  325. Juretzek T, Wang H-J, Nicaud J-M et al (2000) Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica. Biotechnol Bioprocess Eng 5:320–326. https://doi.org/10.1007/BF02942206

    Article  CAS  Google Scholar 

  326. Fabre E, Tharaud C, Gaillardin C (1992) Intracellular transit of a yeast protease is rescued by trans-complementation with its prodomain. J Biol Chem 267:15049–15055

    CAS  PubMed  Google Scholar 

  327. Fabre E, Nicaud JM, Lopez MC, Gaillardin C (1991) Role of the proregion in the production and secretion of the Yarrowia lipolytica alkaline extracellular protease. J Biol Chem 266:3782–3790

    CAS  PubMed  Google Scholar 

  328. Wood V, Gwilliam R, Rajandream M-A et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880. https://doi.org/10.1038/nature724

    Article  CAS  PubMed  Google Scholar 

  329. Sasaki M, Idiris A, Tada A et al (2008) The gap-filling sequence on the left arm of chromosome 2 in fission yeast Schizosaccharomyces pombe. Yeast 25:673–679. https://doi.org/10.1002/yea.1613

    Article  CAS  PubMed  Google Scholar 

  330. Sasaki M, Kumagai H, Takegawa K, Tohda H (2013) Characterization of genome-reduced fission yeast strains. Nucleic Acids Res 41:5382–5399. https://doi.org/10.1093/nar/gkt233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Ballou CE, Ballou L, Ball G (1994) Schizosaccharomyces pombe glycosylation mutant with altered cell surface properties. Proc Natl Acad Sci U S A 91:9327–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Siam R, Dolan WP, Forsburg SL (2004) Choosing and using Schizosaccharomyces pombe plasmids. Methods 33:189–198. https://doi.org/10.1016/j.ymeth.2003.11.013

    Article  CAS  PubMed  Google Scholar 

  333. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  334. Wright AP, Maundrell K, Shall S (1986) Transformation of Schizosaccharomyces pombe by non-homologous, unstable integration of plasmids in the genome. Curr Genet 10:503–508

    Article  CAS  PubMed  Google Scholar 

  335. Hayles J, Nurse P (1992) Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet 26:373–402. https://doi.org/10.1146/annurev.ge.26.120192.002105

    Article  CAS  PubMed  Google Scholar 

  336. Burke JD, Gould KL (1994) Molecular cloning and characterization of the Schizosaccharomyces pombe his3 gene for use as a selectable marker. Mol Gen Genet MGG 242:169–176. https://doi.org/10.1007/BF00391010

    Article  CAS  PubMed  Google Scholar 

  337. Barbet N, Muriel WJ, Carr AM (1992) Versatile shuttle vectors and genomic libraries for use with Schizosaccharomyces pombe. Gene 114:59–66

    Article  CAS  PubMed  Google Scholar 

  338. Okazaki K, Okazaki N, Kume K et al (1990) High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res 18:6485–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Keeney JB, Boeke JD (1994) Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136:849–856

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Bach ML (1987) Cloning and expression of the OMP decarboxylase gene URA4 from Schizosaccharomyces pombe. Curr Genet 12:527–534

    Article  CAS  PubMed  Google Scholar 

  341. Kikuchi Y, Kitazawa Y, Shimatake H, Yamamoto M (1988) The primary structure of the leu1+ gene of Schizosaccharomyces pombe. Curr Genet 14:375–379

    Article  CAS  PubMed  Google Scholar 

  342. Fennessy D, Grallert A, Krapp A et al (2014) Extending the Schizosaccharomyces pombe molecular genetic toolbox. PLoS One 9:e97683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Bahler J, Wu JQ, Longtine MS et al (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951. https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  344. Burland TG, Pallotta D, Tardif MC et al (1991) Fission yeast promoter-probe vectors based on hygromycin resistance. Gene 100:241–245. https://doi.org/10.1016/0378-1119(91)90374-K

    Article  CAS  PubMed  Google Scholar 

  345. Hentges P, Van Driessche B, Tafforeau L et al (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019. https://doi.org/10.1002/yea.1291

    Article  CAS  PubMed  Google Scholar 

  346. Russell PR, Hall BD (1983) The primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe. J Biol Chem 258:143–149

    CAS  PubMed  Google Scholar 

  347. Gmunder H, Kohli J (1989) Cauliflower mosaic virus promoters direct efficient expression of a bacterial G418 resistance gene in Schizosaccharomyces pombe. Mol Gen Genet 220:95–101

    Article  CAS  PubMed  Google Scholar 

  348. Faryar K, Gatz C (1992) Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe. Curr Genet 21:345–349

    Article  CAS  PubMed  Google Scholar 

  349. Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130. https://doi.org/10.1016/0378-1119(93)90551-D

    Article  CAS  PubMed  Google Scholar 

  350. Maundrell K (1990) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265:10857–10864

    CAS  PubMed  Google Scholar 

  351. Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123:131–136. https://doi.org/10.1016/0378-1119(93)90552-E

    Article  CAS  PubMed  Google Scholar 

  352. Hoffman CS, Winston F (1989) A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene 84:473–479. https://doi.org/10.1016/0378-1119(89)90523-4

    Article  CAS  PubMed  Google Scholar 

  353. Iacovoni JS, Russell P, Gaits F (1999) A new inducible protein expression system in fission yeast based on the glucose-repressed inv1 promoter. Gene 232:53–58. https://doi.org/10.1016/S0378-1119(99)00116-X

    Article  CAS  PubMed  Google Scholar 

  354. Watt S, Mata J, Lopez-Maury L et al (2008) urg1: a uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS One 3:e1428. https://doi.org/10.1371/journal.pone.0001428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Bellemare DR, Sanschagrin M, Beaudoin J, Labbe S (2001) A novel copper-regulated promoter system for expression of heterologous proteins in Schizosaccharomyces pombe. Gene 273:191–198

    Article  CAS  PubMed  Google Scholar 

  356. Giga-Hama Y (1997) Secretion of human interleukin-6 using the P-factor secretion ignal in Schizosaccharomyces pombe. In: Giga-Hama Y, Kumagai H (eds) Foreign gene expression in fission yeast: Schizosaccharomyces pombe. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 159–178

    Chapter  Google Scholar 

  357. Braspenning J, Meschede W, Marchini A et al (1998) Secretion of heterologous proteins from Schizosaccharomyces pombe using the homologous leader sequence of pho1+ acid phosphatase. Biochem Biophys Res Commun 245:166–171. https://doi.org/10.1006/bbrc.1998.8402

    Article  CAS  PubMed  Google Scholar 

  358. Kjaerulff S, Jensen MR (2005) Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336:974–982. https://doi.org/10.1016/j.bbrc.2005.08.195

    Article  CAS  PubMed  Google Scholar 

  359. Kjaerulff S, Muller S, Jensen MR (2005) Alternative protein secretion: the Mam1 ABC transporter supports secretion of M-factor linked GFP in fission yeast. Biochem Biophys Res Commun 338:1853–1859. https://doi.org/10.1016/j.bbrc.2005.10.156

    Article  CAS  PubMed  Google Scholar 

  360. Reed G, Nagodawithana TW (1991) Yeast technology. Van Nostrand Reinhold, New York

    Google Scholar 

  361. Johnson EA, Echavarri-erasun C (2011) Yeast biotechnology. In: The yeasts, a taxonomic study. Elsevier B.V, Amsterdam, pp 21–44

    Chapter  Google Scholar 

  362. Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. 2013

    Google Scholar 

  363. Barnett JA (2004) A history of research on yeasts 8: taxonomy. Yeast 21:1141–1193. https://doi.org/10.1002/yea.1154

    Article  CAS  PubMed  Google Scholar 

  364. Boze H, Moutin G, Galzy P (1992) Production of food and fodder yeasts. Crit Rev Biotechnol 12:65–86

    Article  CAS  PubMed  Google Scholar 

  365. Inskeep GC, Wiley AJ, Holdberry JM, Hughes LP (1951) Food yeast from sulfite liquor. Ind Eng Chem 43:1702–1711. https://doi.org/10.1021/ie50500a013

    Article  Google Scholar 

  366. Kurtzman CP, Johnson CJ, Smiley MJ (1979) Determination of conspecificity of Candida utilis and Hansenula jadini through DNA reassociation. Mycologia 71:844–847

    Article  Google Scholar 

  367. Buerth C, Tielker D, Ernst JF (2016) Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 100:6981–6990. https://doi.org/10.1007/s00253-016-7700-8

    Article  CAS  PubMed  Google Scholar 

  368. Bekatorou A, Psarianos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44:407–415

    Google Scholar 

  369. Buerth C, Heilmann CJ, Klis FM et al (2011) Growth-dependent secretome of Candida utilis. Microbiology 157:2493–2503. https://doi.org/10.1099/mic.0.049320-0

    Article  CAS  PubMed  Google Scholar 

  370. Tamakawa H, Tomita Y, Yokoyama A et al (2013) Metabolomic and transcriptomic analysis for rate-limiting metabolic steps in xylose utilization by recombinant Candida utilis. Biosci Biotechnol Biochem 77:1441–1448. https://doi.org/10.1271/bbb.130093

    Article  CAS  PubMed  Google Scholar 

  371. Dworschack RG, Wickerham LJ (1961) Production of extracellular and total invertase by Candida utilis, Saccharomyces cerevisiae, and other yeasts. Appl Environ Microbiol 9:291–294

    CAS  Google Scholar 

  372. Belcarz A, Ginalska G, Lobarzewski J, Penel C (2002) The novel non-glycosylated invertase from Candida utilis ( the properties and the conditions of production and purification ). Biochim Biophys Acta 1594:40–53

    Article  CAS  PubMed  Google Scholar 

  373. Wei G, Li Y, Du G, Chen J (2003) Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol Lett 25:887–890

    Article  CAS  PubMed  Google Scholar 

  374. Liang G, Liao X, Du G, Chen J (2008) Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. J Appl Microbiol 105:1432–1440. https://doi.org/10.1111/j.1365-2672.2008.03892.x

    Article  CAS  PubMed  Google Scholar 

  375. Kogan G, Sandula J, SImkovicova V (1993) Glucomannan from Candida utilis—structural investigation. Folia Microbiol (Praha) 38:219–224

    Article  CAS  Google Scholar 

  376. Ruszova E, Pavek S, Hajkova V et al (2008) Photoprotective effects of glucomannan isolated from Candida utilis. Carbohydr Res 343:501–511. https://doi.org/10.1016/j.carres.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  377. Fujino S, Akiyama D, Akaboshi S et al (2006) Purification and characterization of phospholipase B from Candida utilis. Biosci Biotechnol Biochem 70:377–386. https://doi.org/10.1271/bbb.70.377

    Article  CAS  PubMed  Google Scholar 

  378. Hong Y-R, Chen Y-L, Farh L et al (2006) Recombinant Candida utilis for the production of biotin. Appl Microbiol Biotechnol 71:211–221. https://doi.org/10.1007/s00253-005-0133-4

    Article  CAS  PubMed  Google Scholar 

  379. Ikushima S, Fujii T, Kobayashi O (2009) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem 73:879–884. https://doi.org/10.1271/bbb.80799

    Article  CAS  PubMed  Google Scholar 

  380. Kondo K, Saito T, Kajiwara S et al (1995) A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177:7171–7177. https://doi.org/10.1128/jb.177.24.7171-7177.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Kondo K, Miura Y, Sone H et al (1997) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457. https://doi.org/10.1038/nbt0597-453

    Article  CAS  PubMed  Google Scholar 

  382. Wei W, Hong-Lan Y, HuiFang B et al (2010) The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K. Mol Biol Rep 37:2615–2620. https://doi.org/10.1007/s11033-009-9786-x

    Article  CAS  PubMed  Google Scholar 

  383. Miura Y, Kettoku M, Kato M et al (1999) High level production of thermostable α-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis. J Mol Microbiol Biotechnol 1:129–134

    CAS  PubMed  Google Scholar 

  384. Miura Y, Kondo K, Shimada H et al (1998) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58:306–308. https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<306::AID-BIT29>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  385. Shimada H, Kondo K, Fraser PD et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  386. Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein- engineered xylose reductase and xylitol dehydrogenase ethanol production from xylose by a recombinant Candida utilis. Biosci Biotechnol Biochem 75:1994–2000. https://doi.org/10.1271/bbb.110426

    Article  CAS  PubMed  Google Scholar 

  387. Tamakawa H, Ikushima S, Yoshida S (2012) Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J Biosci Bioeng 113:73–75. https://doi.org/10.1016/j.jbiosc.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  388. Ikushima S, Fujii T, Kobayashi O et al (2009) Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Biosci Biotechnol Biochem 73:1818–1824. https://doi.org/10.1271/bbb.90186

    Article  CAS  PubMed  Google Scholar 

  389. Kunigo M, Buerth C, Tielker D, Ernst JF (2013) Heterologous protein secretion by Candida utilis. Appl Microbiol Biotechnol 97:7357–7368. https://doi.org/10.1007/s00253-013-4890-1

    Article  CAS  PubMed  Google Scholar 

  390. Kunigo M, Buerth C, Ernst JF (2015) Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis. Appl Microbiol Biotechnol 99:8055–8064. https://doi.org/10.1007/s00253-015-6703-1

    Article  CAS  PubMed  Google Scholar 

  391. Tamakawa H, Mita T, Yokoyama A et al (2013) Metabolic engineering of Candida utilis for isopropanol production. Appl Microbiol Biotechnol 97:6231–6239. https://doi.org/10.1007/s00253-013-4964-0

    Article  CAS  PubMed  Google Scholar 

  392. Ikushima S, Minato T, Kondo K (2009) Identification and application of novel autonomously replicating sequences (ARSs) for promoter-cloning and co-transformation in Candida utilis. Biosci Biotechnol Biochem 73:152–159. https://doi.org/10.1271/bbb.80568

    Article  CAS  PubMed  Google Scholar 

  393. Bonkova H, Osadska M, Krahulec J et al (2014) Upstream regulatory regions controlling the expression of the Candida utilis maltase gene. J Biotechnol 189:136–142. https://doi.org/10.1016/j.jbiotec.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  394. Iwakiri R, Noda Y, Adachi H et al (2006) Isolation and characterization of promoters suitable for a multidrug-resistant marker CuYAP1 in the yeast Candida utilis. Yeast 23:23–34. https://doi.org/10.1002/yea.1335

    Article  CAS  PubMed  Google Scholar 

  395. Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J Microbiol Biotechnol 8:259–263. https://doi.org/10.1007/BF01201874

    Article  CAS  PubMed  Google Scholar 

  396. Jeong H, Lee DH, Kim SH et al (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585. https://doi.org/10.1128/EC.00260-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Belloch C, Barrio E, García MD, Querol A (1998) Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14:1341–1354. https://doi.org/10.1002/(SICI)1097-0061(199811)14:15<1341::AID-YEA328>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  398. Lane MM, Burke N, Karreman R et al (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100:507–519. https://doi.org/10.1007/s10482-011-9606-x

    Article  CAS  PubMed  Google Scholar 

  399. Rouwenhorst RJ, Visser LE, van der Baan AA et al (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  400. Martins DBG, de Souza CG Jr, Simões DA, de Morais MA Jr (2002) The β-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol 44:379–382. https://doi.org/10.1007/s00284-001-0052-2

    Article  CAS  PubMed  Google Scholar 

  401. Rocha SN, Abrahão-Neto J, Cerdán ME et al (2011) Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 89:375–385. https://doi.org/10.1007/s00253-010-2869-8

    Article  CAS  PubMed  Google Scholar 

  402. Lee K-S, Kim J-S, Heo P et al (2013) Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl Microbiol Biotechnol 97:2029–2041. https://doi.org/10.1007/s00253-012-4306-7

    Article  CAS  PubMed  Google Scholar 

  403. Bragança CRS, Colombo LT, Roberti AS et al (2015) Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1). Appl Microbiol Biotechnol 99:1191–1203. https://doi.org/10.1007/s00253-014-5963-5

    Article  CAS  PubMed  Google Scholar 

  404. Yang C, Hu S, Zhu S et al (2015) Characterizing yeast promoters used in Kluyveromyces marxianus. World J Microbiol Biotechnol 31:1641–1646. https://doi.org/10.1007/s11274-015-1899-x

    Article  CAS  PubMed  Google Scholar 

  405. Nonklang S, Abdel-Banat BMA, Cha-aim K et al (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521. https://doi.org/10.1128/AEM.01854-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Yamamoto H, Shima T, Yamaguchi M et al (2015) The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J Biol Chem 290:29506–29518. https://doi.org/10.1074/jbc.M115.684233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. de Souza CG Jr, Ledingham WM, de Morais MA Jr (2001) Utilisation of cheese whey as an alternative growth medium for recombinant strains of Kluyveromyces marxianus. Biotechnol Lett 23:1413–1416. https://doi.org/10.1023/A:1011617914709

    Article  Google Scholar 

  408. Bartkevic̆iūtė D, S̆ieks̆telė R, Sasnauskas K (2000) Heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1) using versatile autonomously replicating vector for a wide range of host. Enzym Microb Technol 26:653–656. https://doi.org/10.1016/S0141-0229(00)00155-1

    Article  Google Scholar 

  409. Bergkamp RJM, Bootsman TC, Toschka HY et al (1993) Expression of an α-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol 40:309–317. https://doi.org/10.1007/BF00170386

    Article  CAS  PubMed  Google Scholar 

  410. Raimondi S, Uccelletti D, Matteuzzi D et al (2008) Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol 77:1269–1277. https://doi.org/10.1007/s00253-007-1270-8

    Article  CAS  PubMed  Google Scholar 

  411. Raimondi S, Uccelletti D, Amaretti A et al (2010) Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl Microbiol Biotechnol 86:871–878. https://doi.org/10.1007/s00253-009-2353-5

    Article  CAS  PubMed  Google Scholar 

  412. Raimondi S, Zanni E, Amaretti A et al (2013) Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microb Cell Factories 12:34. https://doi.org/10.1186/1475-2859-12-34

    Article  CAS  Google Scholar 

  413. Iborra F (1993) High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Curr Genet 24:181–183. https://doi.org/10.1007/BF00324685

    Article  CAS  PubMed  Google Scholar 

  414. Yanase S, Hasunuma T, Yamada R et al (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388. https://doi.org/10.1007/s00253-010-2784-z

    Article  CAS  PubMed  Google Scholar 

  415. Goshima T, Negi K, Tsuji M et al (2013) Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 116:551–554. https://doi.org/10.1016/j.jbiosc.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  416. Lee JW, In JH, Park J-B et al (2017) Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for L-lactic acid production. J Biotechnol 241:81–86. https://doi.org/10.1016/j.jbiotec.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  417. Heo P, Yang T-J, Chung S-C et al (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J Biotechnol 167:323–325. https://doi.org/10.1016/j.jbiotec.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  418. Cheon Y, Kim J-S, Park J-B et al (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J Biotechnol 182–183:30–36. https://doi.org/10.1016/j.jbiotec.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  419. Hoshida H, Murakami N, Suzuki A et al (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31:29–46. https://doi.org/10.1002/yea.2993

    Article  CAS  PubMed  Google Scholar 

  420. Chang J-J, Ho C-Y, Ho F-J et al (2012) PGASO: a synthetic biology tool for engineering a cellulolytic yeast. Biotechnol Biofuels 5:53. https://doi.org/10.1186/1754-6834-5-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Yuan W, Zhao X, Chen L, Bai F (2013) Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. Biotechnol Bioprocess Eng 18:721–727. https://doi.org/10.1007/s12257-013-0026-9

    Article  CAS  Google Scholar 

  422. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123. https://doi.org/10.1016/j.jbiotec.2007.03.008

    Article  CAS  PubMed  Google Scholar 

  423. Theron CW, Labuschagné M, Gudiminchi R et al (2014) A broad-range yeast expression system reveals Arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res 14:556–566. https://doi.org/10.1111/1567-1364.12142

    Article  CAS  PubMed  Google Scholar 

  424. Zhou H-X, Xin F-H, Chi Z et al (2014) Inulinase production by the yeast Kluyveromyces marxianus with the disrupted MIG1 gene and the over-expressed inulinase gene. Process Biochem 49:1867–1874. https://doi.org/10.1016/j.procbio.2014.08.001

    Article  CAS  Google Scholar 

  425. Juretzek T, Le Dall M-T, Mauersberger S et al (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113. https://doi.org/10.1002/1097-0061(20010130)18:2<97::AID-YEA652>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  426. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354. https://doi.org/10.1007/s00253-008-1458-6

    Article  CAS  PubMed  Google Scholar 

  427. Zhang B, Li L, Zhang J et al (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316. https://doi.org/10.1007/s10295-013-1230-5

    Article  CAS  PubMed  Google Scholar 

  428. Zhang J, Zhang B, Wang D et al (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201. https://doi.org/10.1016/j.biortech.2013.10.109

    Article  CAS  PubMed  Google Scholar 

  429. Zhang J, Zhang B, Wang D et al (2015) Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 31:140–152. https://doi.org/10.1016/j.ymben.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  430. Matsuzaki C, Nakagawa A, Koyanagi T et al (2012) Kluyveromyces marxianus-based platform for direct ethanol fermentation and recovery from cellulosic materials under air-ventilated conditions. J Biosci Bioeng 113:604–607. https://doi.org/10.1016/j.jbiosc.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  431. Kim HE, Qin R, Chae KS (2005) Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. J Microbiol Biotechnol 15:447–450

    CAS  Google Scholar 

  432. Almeida C, Queirós O, Wheals A et al (2003) Acquisition of flocculation phenotype by Kluyveromyces marxianus when overexpressing GAP1 gene encoding an isoform of glyceraldehyde-3-phosphate dehydrogenase. J Microbiol Methods 55:433–440. https://doi.org/10.1016/S0167-7012(03)00189-1

    Article  CAS  PubMed  Google Scholar 

  433. Chang J-J, Ho F-J, Ho C-Y et al (2013) Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6:19. https://doi.org/10.1186/1754-6834-6-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Chen H-L, Chen Y-C, Lu M-YJ et al (2012) A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol Biofuels 5:24. https://doi.org/10.1186/1754-6834-5-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Thomas DS, Davenport RR (1985) Zygosaccharomyces bailii—a profile of characteristics and spoilage activities. Food Microbiol 2:157–169. https://doi.org/10.1016/S0740-0020(85)80008-3

    Article  Google Scholar 

  436. Cole MB, Keenan MH (1986) Synergistic effects of weak-acid preservatives and pH on the growth of Zygosaccharomyces bailii. Yeast 2:93–100. https://doi.org/10.1002/yea.320020204

    Article  CAS  PubMed  Google Scholar 

  437. Praphailong W, Fleet GH (1997) The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol 14:459–468. https://doi.org/10.1006/fmic.1997.0106

    Article  CAS  Google Scholar 

  438. Dato L, Branduardi P, Passolunghi S et al (2010) Advances in molecular tools for the use of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. FEMS Yeast Res 10:894–908. https://doi.org/10.1111/j.1567-1364.2010.00668.x

    Article  CAS  PubMed  Google Scholar 

  439. Zuehlke JM, Petrova B, Edwards CG (2013) Advances in the control of wine spoilage by Zygosaccharomyces and Dekkera/Brettanomyces. Annu Rev Food Sci Technol 4:57–78. https://doi.org/10.1146/annurev-food-030212-182533

    Article  CAS  PubMed  Google Scholar 

  440. Buchta V, Sláviková E, Vadkartiová R et al (1996) Zygosaccharomyces bailii as a potential spoiler of mustard. Food Microbiol 13:133–135. https://doi.org/10.1006/fmic.1996.0017

    Article  Google Scholar 

  441. Toh-E A, Araki H, Utatsu I, Oshima Y (1984) Plasmids resembling 2-μm DNA in the osmotolerant yeasts Saccharomyces bailii and Saccharomyces bisporus. Microbiology 130:2527–2534

    Article  CAS  Google Scholar 

  442. Branduardi P, Valli M, Brambilla L et al (2004) The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res 4:493–504

    Article  CAS  PubMed  Google Scholar 

  443. Vigentini I, Brambilla L, Branduardi P et al (2005) Heterologous protein production in Zygosaccharomyces bailii: physiological effects and fermentative strategies. FEMS Yeast Res 5:647–652. https://doi.org/10.1016/j.femsyr.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  444. Paciello L, Landi C, De Alteriis E, Parascandola P (2012) Mathematical modeling as a tool to describe and optimize heterologous protein production by yeast cells in aerated fed-batch reactor. Chem Eng Trans 27:79–84. https://doi.org/10.3303/CET1227014

    Article  Google Scholar 

  445. Passolunghi S, Riboldi L, Dato L et al (2010) Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype. Microb Cell Factories 9:7. https://doi.org/10.1186/1475-2859-9-7

    Article  CAS  Google Scholar 

  446. Gallwitz D, Seidel R (1980) Molecular cloning of the actin gene from yeast Saccharomyces cerevisiae. Nucleic Acids Res 8:1043–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Williamson VM, Bennetzen J, Young ET et al (1980) Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature 283:214–216

    Article  CAS  PubMed  Google Scholar 

  448. Bennetzens JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J Biol Chem 257:3018–3025

    Google Scholar 

  449. Denis CL, Ferguson J, Young ET (1983) mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J Biol Chem 258:1165–1171

    CAS  PubMed  Google Scholar 

  450. Guarente L, Lalonde B, Gifford P et al (1984) Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511. https://doi.org/10.1016/0092-8674(84)90243-5

    Article  CAS  PubMed  Google Scholar 

  451. Holland MJ, Holland JP, Thillg GP, Jackson KA (1981) The primary structures of two yeast enolase genes. J Biol Chem 256:1385–1395

    CAS  PubMed  Google Scholar 

  452. McAlisters L, Holland MJ (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027

    Google Scholar 

  453. McAlisters L, Holland MJ (1985) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15013–15018

    Google Scholar 

  454. Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose glycolytic flux. Mol Microbiol 16:157–167. https://doi.org/10.1111/j.1365-2958.1995.tb02400.x

    Article  CAS  PubMed  Google Scholar 

  455. Singh A, Chen EY, Lugovoy JM et al (1983) Saccharomyces cerevisiae contains two discrete genes coding for the alpha-factor pheromone. Nucleic Acids Res 11:4049–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. Holland MJ, Holland JP (1978) Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry 17:4900–4907

    Article  CAS  PubMed  Google Scholar 

  457. Dobson MJ, Tuite MF, Roberts NA et al (1982) Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucleic Acids Res 10:2625–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Hitzeman RA, Hagie FE, Hayflick JS et al (1982) The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res 10:7791–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Ogden JE, Stanway C, Kim S et al (1986) Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences. Mol Cell Biol 6:4335–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Nishizawa M, Araki R, Teranishi Y (1989) Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 9:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Schirmaier F, Philippsen P (1984) Identification of two genes coding for the translation elongation factor EF-la of S. cerevisiae. EMBO J 3:3311–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Nagashima K, Kasai M, Nagata S, Kaziro Y (1986) Structure of the two genes for coding polypeptide chain elongation factor 1 (EF-1) from Saccharomyces cerevisiae. Gene 45:265–273. https://doi.org/10.1016/0378-1119(86)90024-7

    Article  CAS  PubMed  Google Scholar 

  463. Kim S, Mellor J, Kingsman AJ, Kingsman SM (1986) Multiple control elements in the TRP1 promoter of Saccharomyces cerevisiae. Mol Cell Biol 6:4251–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Beier DR, Young ET (1982) Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae. Nature 300:724–728

    Article  CAS  PubMed  Google Scholar 

  465. Fogel S, Welch JW (1982) Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci U S A 79:5342–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Butt TR, Sternberg EJ, Gormant JA et al (1984) Copper metallothionein of yeast, structure of the gene, and regulation of expression biochemistry. Proc Natl Acad Sci U S A 81:3332–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Karin M, Najariant R, Haslinger A et al (1984) Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc Natl Acad Sci U S A 81:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Johnston M, Davis RW (1984) Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4:1440–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Fang F, Salmon K, Shen MWY et al (2011) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 28:123–136

    Article  CAS  PubMed  Google Scholar 

  470. Kerjan P, Cherest H, Surdin-Kerjan Y (1986) Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene. Nucleic Acids Res 14:7861–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Nakao J, Miyanohara A, Toh-e A, Matsubara K (1986) Saccharomyces cerevisiae PH05 promoter region: location and function of the upstream activation site. Mol Cell Biol 6:2613–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Arima K, Oshima T, Kubota I et al (1983) The nucleotide sequence of the yeast PHO5gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res 11:1657–1672. https://doi.org/10.1093/nar/11.6.1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Kurjan J, Herskowitz I (1982) Structure of a yeast pheromone gene (MFα): a putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30:933–943. https://doi.org/10.1016/0092-8674(82)90298-7

    Article  CAS  PubMed  Google Scholar 

  474. Taussig R, Carlson M (1983) Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res 11:1943–1954. https://doi.org/10.1093/nar/11.6.1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  475. Hofmann KJ, Schultz LD (1991) Mutations of the α-galactosidase signal peptide which greatly enhance secretion of heterologous proteins by yeast. Gene 101:105–111. https://doi.org/10.1016/0378-1119(91)90230-9

    Article  CAS  PubMed  Google Scholar 

  476. Baldari C, Murray JAH, Ghiara P et al (1987) A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1β in Saccharomyces cerevisiae. EMBO J 6:229–234. https://doi.org/10.1002/j.1460-2075.1987.tb04743.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Liang S, Zou C, Lin Y et al (2013) Identification and characterization of P GCW14: a novel, strong constitutive promoter of Pichia pastoris. Biotechnol Lett 35:1865–1871. https://doi.org/10.1007/s10529-013-1265-8

    Article  CAS  PubMed  Google Scholar 

  478. de Almeida JRM, de Moraes LMP, Torres FAG (2005) Molecular characterization of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. Yeast 22:725–737. https://doi.org/10.1002/yea.1243

    Article  CAS  PubMed  Google Scholar 

  479. Koutz P, Davis GR, Stillman C et al (1989) Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast 5:167–177. https://doi.org/10.1002/yea.320050306

    Article  CAS  PubMed  Google Scholar 

  480. Ellis SB, Brust PF, Koutz PJ et al (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Menendez J, Valdes I, Cabrera N (2003) The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 20:1097–1108. https://doi.org/10.1002/yea.1028

    Article  CAS  PubMed  Google Scholar 

  482. Delic M, Mattanovich D, Gasser B (2013) Repressible promoters - a novel tool to generate conditional mutants in Pichia pastoris. Microb Cell Factories 12:6. https://doi.org/10.1186/1475-2859-12-6

    Article  CAS  Google Scholar 

  483. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  484. Oka C, Tanaka M, Muraki M et al (1999) Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63:1977–1983. https://doi.org/10.1271/bbb.63.1977

    Article  CAS  PubMed  Google Scholar 

  485. He Z, Huang Y, Qin Y et al (2012) Comparison of alpha-factor preprosequence and a classical mammalian signal peptide for secretion of recombinant xylanase xynB from yeast Pichia pastoris. J Microbiol Biotechnol 22:479–483

    Article  CAS  PubMed  Google Scholar 

  486. Whittaker MM, Whittaker JW (2000) Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expr Purif 20:105–111. https://doi.org/10.1006/prep.2000.1287

    Article  CAS  PubMed  Google Scholar 

  487. Kottmeier K, Ostermann K, Bley T, Rodel G (2011) Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl Microbiol Biotechnol 91:133–141. https://doi.org/10.1007/s00253-011-3246-y

    Article  CAS  PubMed  Google Scholar 

  488. Xiong R, Chen J, Chen J (2008) Secreted expression of human lysozyme in the yeast Pichia pastoris under the direction of the signal peptide from human serum albumin. Biotechnol Appl Biochem 51:129–134. https://doi.org/10.1042/BA20070205

    Article  CAS  PubMed  Google Scholar 

  489. Eiden-Plach A, Zagorc T, Heintel T et al (2004) Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Appl Environ Microbiol 70:961–966. https://doi.org/10.1128/AEM.70.2.961-966.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Kato S, Ishibashi M, Tatsuda D et al (2001) Efficient expression, purification and characterization of mouse salivary alpha-amylase secreted from methylotrophic yeast, Pichia pastoris. Yeast 18:643–655. https://doi.org/10.1002/yea.714

    Article  CAS  PubMed  Google Scholar 

  491. Raemaekers RJ, de Muro L, Gatehouse JA, Fordham-Skelton AP (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem 265:394–403

    Article  CAS  PubMed  Google Scholar 

  492. Inokuma K, Bamba T, Ishii J et al (2016) Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide. Biotechnol Bioeng 113:2358–2366. https://doi.org/10.1002/bit.26008

    Article  CAS  PubMed  Google Scholar 

  493. Crawford K, Zaror I, Bishop RJ, Innis MA (1997) Pichia secretory leader for protein expression. WO1997012044 A2

    Google Scholar 

  494. Berardi E, Gambini A, Bellu AR (2003) ALG2, the Hansenula polymorpha isocitrate lyase gene. Yeast 20:803–811. https://doi.org/10.1002/yea.1002

    Article  CAS  PubMed  Google Scholar 

  495. Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Prog Nucleic Acid Res Mol Biol 37:281–322

    Article  CAS  PubMed  Google Scholar 

  496. Ledeboer AM, Edens L, Maat J et al (1985) Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res 13:3063–3082. https://doi.org/10.1093/nar/13.9.3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Hollenberg CP, Janowiez ZA (1989) DNA-molecules coding for FMDH control regions and structured gene for a protein having FMDH-activity and their uses. EP 0299108 A1

    Google Scholar 

  498. Janowicz ZA, Eckart MR, Drewke C et al (1985) Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha. Nucleic Acids Res 13:3043–3062. https://doi.org/10.1093/nar/13.9.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  499. Ávila J, González C, Brito N, Siverio JM (1998) Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Biochem J 335:647–652

    Article  PubMed  PubMed Central  Google Scholar 

  500. Hansen H, Didion T, Thiemann A et al (1992) Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. Mol Gen Genomics 235:269–278

    Article  CAS  Google Scholar 

  501. Faber KN, Haima P, Gietl C et al (1994) The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins). Proc Natl Acad Sci U S A 91:12985–12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. Rösel H, Kunze G (1995) Cloning and characterization of a TEF gene for elongation factor 1α from the yeast Arxula adeninivorans. Curr Genet 28:360–366. https://doi.org/10.1007/BF00326434

    Article  PubMed  Google Scholar 

  503. Böer E, Wartmann T, Schmidt S et al (2005) Characterization of the AXDH gene and the encoded xylitol dehydrogenase from the dimorphic yeast Arxula adeninivorans. Antonie Van Leeuwenhoek 87:233–243. https://doi.org/10.1007/s10482-004-3832-4

    Article  CAS  PubMed  Google Scholar 

  504. Bui DM, Kunze I, Förster S et al (1996) Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 44:610–619. https://doi.org/10.1007/BF00172493

    Article  CAS  Google Scholar 

  505. Bianchi MM, Tizzani L, Destruelle M et al (1996) The “petite-negative” yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol Microbiol 19:27–36. https://doi.org/10.1046/j.1365-2958.1996.346875.x

    Article  CAS  PubMed  Google Scholar 

  506. Walton JD, Paquin CE, Kaneko K, Williamson VM (1986) Resistance to antimycin A in yeast by amplification of ADH4 on a linear, 42 kb palindromic plasmid. Cell 46:857–863. https://doi.org/10.1016/0092-8674(86)90067-X

    Article  CAS  PubMed  Google Scholar 

  507. Ferminan E, Dominguez A (1997) The KlPHO5 gene encoding a repressible acid phosphatase in the yeast Kluyveromyces lactis: cloning, sequencing and transcriptional analysis of the gene, and purification and properties of the enzyme. Microbiology 143:2615–2625. https://doi.org/10.1099/00221287-143-8-2615

    Article  CAS  PubMed  Google Scholar 

  508. Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Ongay-Larios L, Navarro-Olmos R, Kawasaki L et al (2007) Kluyveromyces lactis sexual pheromones. Gene structures and cellular responses to α-factor. FEMS Yeast Res 7:740–747. https://doi.org/10.1111/j.1567-1364.2007.00249.x

    Article  CAS  PubMed  Google Scholar 

  510. Chen X, Gao B, Shi W, Li Y (1992) Expression and secretion of human interferon alpha A in yeast Kluyveromyces lactis. Yi Chuan Xue Bao 19:284–288

    CAS  PubMed  Google Scholar 

  511. Hong S-P, Seip J, Walters-Pollak D et al (2012) Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter. Yeast 29:59–72. https://doi.org/10.1002/yea.1917

    Article  CAS  PubMed  Google Scholar 

  512. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. https://doi.org/10.1016/j.ymben.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  513. Franke A, Kaczmarek F, Eisenhard M et al (1988) Expression and secretion of bovine prochymosin in Yarrowia lipolytica. Dev Ind Microbiol 29:43–57

    CAS  Google Scholar 

  514. Sassi H, Delvigne F, Kar T et al (2016) Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb Cell Factories 15:159. https://doi.org/10.1186/s12934-016-0558-8

    Article  CAS  Google Scholar 

  515. Tharaud C, Ribet AM, Costes C, Gaillardin C (1992) Secretion of human blood coagulation factor XIIIa by the yeast Yarrowia lipolytica. Gene 121:111–119

    Article  CAS  PubMed  Google Scholar 

  516. Gasmi N, Fudalej F, Kallel H, Nicaud J-M (2011) A molecular approach to optimize hIFN alpha2b expression and secretion in Yarrowia lipolytica. Appl Microbiol Biotechnol 89:109–119. https://doi.org/10.1007/s00253-010-2803-0

    Article  CAS  PubMed  Google Scholar 

  517. Park CS, Chang CC, Kim JY et al (1997) Expression, secretion, and processing of rice alpha-amylase in the yeast Yarrowia lipolytica. J Biol Chem 272:6876–6881

    Article  CAS  PubMed  Google Scholar 

  518. Madzak C, Otterbein L, Chamkha M et al (2005) Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 5:635–646. https://doi.org/10.1016/j.femsyr.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  519. Jolivalt C, Madzak C, Brault A et al (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456. https://doi.org/10.1007/s00253-004-1717-0

    Article  CAS  PubMed  Google Scholar 

  520. Park CS, Chang CC, Ryu DD (2000) Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica. Appl Biochem Biotechnol 87:1–15

    Article  CAS  PubMed  Google Scholar 

  521. Roth R, Moodley V, van Zyl P (2009) Heterologous expression and optimized production of an Aspergillus aculeatus endo-1,4-beta-mannanase in Yarrowia lipolytica. Mol Biotechnol 43:112–120. https://doi.org/10.1007/s12033-009-9187-3

    Article  CAS  PubMed  Google Scholar 

  522. Yuzbashev TV, Yuzbasheva EY, Vibornaya TV et al (2012) Production of recombinant Rhizopus oryzae lipase by the yeast Yarrowia lipolytica results in increased enzymatic thermostability. Protein Expr Purif 82:83–89. https://doi.org/10.1016/j.pep.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  523. Kaufer NF, Simanis V, Nurse P (1985) Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 318:78–80

    Article  CAS  PubMed  Google Scholar 

  524. Matsuzawa T, Tohda H, Takegawa K (2013) Ethanol-inducible gene expression using gld1 (+) promoter in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 97:6835–6843. https://doi.org/10.1007/s00253-013-4812-2

    Article  CAS  PubMed  Google Scholar 

  525. Schweingruber ME, Edenharter E, Zurlinden A, Stockmaier KM (1992) Regulation of pho1-encoded acid phosphatase of Schizosaccharomyces pombe by adenine and phosphate. Curr Genet 22:289–292

    Article  CAS  PubMed  Google Scholar 

  526. Okada H, Sekiya T, Yokoyama K et al (1998) Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccharomyces pombe and characterization of its products. Appl Microbiol Biotechnol 49:301–308

    Article  CAS  PubMed  Google Scholar 

  527. Okada H, Tada K, Sekiya T et al (1998) Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl Environ Microbiol 64:555–563

    CAS  PubMed  PubMed Central  Google Scholar 

  528. Tokunaga M, Kawamura A, Yonekyu S et al (1993) Secretion of mouse alpha-amylase from fission yeast Schizosaccharomyces pombe: presence of chymostatin-sensitive protease activity in the culture medium. Yeast 9:379–387. https://doi.org/10.1002/yea.320090408

    Article  CAS  PubMed  Google Scholar 

  529. Sánchez Y, Moreno S, Rodríguez L (1988) Synthesis of Saccharomyces cerevisiae invertase by Schizosaccharomyces pombe. FEBS Lett 234:95–99. https://doi.org/10.1016/0014-5793(88)81311-5

    Article  PubMed  Google Scholar 

  530. Azam M, Kesarwani M, Natarajan K, Datta A (2001) A secretion signal is present in the Collybia velutipes oxalate decarboxylase gene. Biochem Biophys Res Commun 289:807–812. https://doi.org/10.1006/bbrc.2001.6049

    Article  CAS  PubMed  Google Scholar 

  531. Bröker M, Ragg H, Karges HE (1987) Expression of human antithrombin III in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biochim Biophys Acta 908:203–213

    Article  PubMed  Google Scholar 

  532. Smerdon GR, Aves SJ, Walton EF (1995) Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Gene 165:313–318

    Article  CAS  PubMed  Google Scholar 

  533. Sambamurti K (1997) Expression and secretion of mammalian proteins in Schizosaccharomyces pombe. In: Giga-Hama Y, Kumagai H (eds) Foreign gene expression in fission yeast: Schizosaccharomyces pombe. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 149–158

    Chapter  Google Scholar 

  534. Kondo K, Kajiwara S, Misawa N (1996) Transformant line of Candida utilis yeast and expression of heterogene therewith

    Google Scholar 

  535. Chávez FP, Pons T, Delgado JM, Rodríguez L (1998) Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis. Yeast 14:1223–1232. https://doi.org/10.1002/(SICI)1097-0061(19980930)14:13<1223::AID-YEA301>3.0.CO;2-3

    Article  PubMed  Google Scholar 

  536. Ladrière J-M, Delcour J, Vandenhaute J (1993) Sequence of a gene coding for a cytoplasmic alcohol dehydrogenase from Kluyveromyces marxianus ATCC 12424. Biochim Biophys Acta 1173:99–101. https://doi.org/10.1016/0167-4781(93)90252-9

    Article  PubMed  Google Scholar 

  537. Shisa N, Akada R, Hoshida H, et al (2015) Novel promoter and use thereof. US 20150031103 A1

    Google Scholar 

  538. Fernandes PA, Sena-Esteves M, Moradas-Ferreira P (1995) Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene family from Kluyveromyces marxianus—polymerase chain reaction-single-strand conformation polymorphism as a tool for the study of multigenic families. Yeast 11:725–733. https://doi.org/10.1002/yea.320110804

    Article  CAS  PubMed  Google Scholar 

  539. Zhang G, Lu M, Wang J et al (2017) Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction. Sci Rep 7:45104. https://doi.org/10.1038/srep45104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  540. Laloux O, Cassart J-P, Delcour J et al (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289:64–68. https://doi.org/10.1016/0014-5793(91)80909-M

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Çalık .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gündüz Ergün, B., Hüccetoğulları, D., Öztürk, S., Çelik, E., Çalık, P. (2019). Established and Upcoming Yeast Expression Systems. In: Gasser, B., Mattanovich, D. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 1923. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9024-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9024-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9023-8

  • Online ISBN: 978-1-4939-9024-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics