Skip to main content

Ex Vivo Measurements of Ca2+ Transients in Intracellular Compartments of Skeletal Muscle Fibers by Means of Genetically Encoded Probes

  • Protocol
  • First Online:
Calcium Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1925))

Abstract

We report a method for ex vivo measurements of Ca2+ transients in skeletal muscle fibers, both in the sarcoplasma and into the mitochondria. These measurements are based on the use of genetically encoded probes. Addition of targeting DNA sequences, in frame with the probe encoding sequence, ensures protein expression in specific compartments. The use of probes with different excitation spectra allows the simultaneous determination of cytosolic and mitochondrial Ca2+ transients in the same fiber. Probe encoding plasmids are expressed in flexor digitorum brevis (FDB) muscles by means of the in vivo electroporation technique. Measurements are then performed ex vivo in isolated single myofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. https://doi.org/10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  2. Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132. https://doi.org/10.1016/j.molcel.2010.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290. https://doi.org/10.1016/j.molcel.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  CAS  PubMed  Google Scholar 

  5. Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20:1058–1067. https://doi.org/10.1091/mbc.E08-07-0783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eisner V, Csordas G, Hajnoczky G (2013) Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle—pivotal roles in Ca2+ and reactive oxygen species signaling. J Cell Sci 126:2965–2978. https://doi.org/10.1242/jcs.093609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rossi a E, Boncompagni S, Wei L, Protasi F, Dirksen RT (2011) Differential impact of mitochondrial positioning on mitochondrial Ca2+ uptake and Ca2+ spark suppression in skeletal muscle. AJP Cell Physiol 301:C1128–C1139. https://doi.org/10.1152/ajpcell.00194.2011

    Article  CAS  Google Scholar 

  8. Brini M, De Giorgi F, Murgia M, Marsault R, Massimino ML, Cantini M, Rizzuto R, Pozzan T (1997) Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 8:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brûlet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974. https://doi.org/10.1371/journal.pone.0000974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudolf R (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536. https://doi.org/10.1083/jcb.200403102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mammucari C, Gherardi G, Lanfranchi G, Rizzuto R, Zamparo I, Raffaello A, Boncompagni S, Chemello F, Cagnin S, Braga A, Zanin S, Pallafacchina G, Zentilin L, Sandri M, De Stefani D, Protasi F, Lanfranchi G, Rizzuto R (2015) The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 10:1269–1279. https://doi.org/10.1016/j.celrep.2015.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. https://doi.org/10.1038/nature10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. https://doi.org/10.1038/nature10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mammucari C, Raffaello A, Vecellio Reane D, Rizzuto R (2016) Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochim Biophys Acta 1863:2457–2464. https://doi.org/10.1016/j.bbamcr.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  15. Vecellio Reane D, Vallese F, Checchetto V, Acquasaliente L, Butera G, De Filippis V, Szabò I, Zanotti G, Rizzuto R, Raffaello A (2016) A MICU1 splice variant confers high sensitivity to the mitochondrial Ca2+ uptake machinery of skeletal muscle. Mol Cell 64:760–773. https://doi.org/10.1016/j.molcel.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An Expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891. https://doi.org/10.1126/science.1208592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tosatto A, Sommaggio R, Kummerow C, Bentham RB, Blacker TS, Berecz T, Duchen MR, Rosato A, Bogeski I, Szabadkai G, Rizzuto R, Mammucari C (2016) The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol Med 8:569–585. https://doi.org/10.15252/emmm.201606255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research is supported by fundings from the Italian Ministry of Education, University, and Research (PRIN 2015W2N883_003) and the French Muscular Dystrophy Association AFM-Téléthon (18857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Mammucari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gherardi, G., Mammucari, C. (2019). Ex Vivo Measurements of Ca2+ Transients in Intracellular Compartments of Skeletal Muscle Fibers by Means of Genetically Encoded Probes. In: Raffaello, A., Vecellio Reane, D. (eds) Calcium Signalling. Methods in Molecular Biology, vol 1925. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9018-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9018-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9017-7

  • Online ISBN: 978-1-4939-9018-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics