Skip to main content

Methods to Measure Intracellular Ca2+ Concentration Using Ca2+-Sensitive Dyes

  • Protocol
  • First Online:
Calcium Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1925))

Abstract

Ca2+ ion is universally considered the most versatile second messenger responsible for decoding and regulating the majority of the signaling pathways within the cell. The study of intracellular Ca2+ concentration ([Ca2+]i) dynamics is consequently of primary importance for the interpretation of cellular biology. This chapter will present a relatively simple, largely diffused, and nevertheless robust method to measure variations of [Ca2+]i by the use of the Ca2+-sensitive chemical dye Fura-2. A general protocol for the assessment of [Ca2+]i in adherent cells, applicable to a variety of cell systems, will be first presented. Then, the implementation of Fura-2 to detect [Ca2+]i in two specific cell types, namely, human adrenocortical cells and primary skin fibroblasts, will be discussed in more particulars. Finally, the procedure to monitor Ca2+ influx through the plasma membrane using Fura-2 will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringer S (1883) A third contribution regarding the influence of the inorganic constituents of the blood on the ventricular contraction. J Physiol 4:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325. https://doi.org/10.1038/361315a0

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  4. Clapham DE (2007) Calcium Signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  5. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    Article  CAS  PubMed  Google Scholar 

  6. Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the Center of Cell Signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burgoyne T, Patel S, Eden ER (2015) Calcium signaling at ER membrane contact sites. Biochim Biophys Acta 1853:2012–2017

    Article  CAS  PubMed  Google Scholar 

  8. Bootman MD, Petersen OH, Verkhratsky A (2002) The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium 32:231–234

    Article  CAS  PubMed  Google Scholar 

  9. Santulli G, Nakashima R, Yuan Q, Marks AR (2017) Intracellular calcium release channels: an update. J Physiol 595:3041–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta Bioenerg 1787:1342–1351

    Article  CAS  Google Scholar 

  11. Putney JWJ (1977) Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol 268:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  CAS  PubMed  Google Scholar 

  13. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Article  CAS  PubMed  Google Scholar 

  14. Putney JW, St Bird GJ (1993) The signal for Capacitative calcium entry Minireview biphasic nature of calcium Signaling. Cell 75:199–201

    Article  CAS  PubMed  Google Scholar 

  15. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stathopulos PB, Ikura M (2017) Store operated calcium entry: from concept to structural mechanisms. Cell Calcium 63:3–7

    Article  CAS  PubMed  Google Scholar 

  18. Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+](c)). A critical evaluation. J Biol Chem 270(17):9896–9903

    Article  CAS  PubMed  Google Scholar 

  19. Granatiero V, Patron M, Tosatto A, Merli G, Rizzuto R (2014) The use of aequorin and its variants for Ca2+ measurements. Cold Spring Harb Protoc 2014:9–16

    PubMed  Google Scholar 

  20. Tosatto A, Rizzuto R, Mammucari C Ca2+ Measurements in Mammalian cells with Aequorin-based probes

    Google Scholar 

  21. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586

    Article  CAS  PubMed  Google Scholar 

  22. Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  CAS  PubMed  Google Scholar 

  23. Pérez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: properties and evaluation. Biochim Biophys Acta 1833:1787–1797

    Article  PubMed  Google Scholar 

  24. Hove-Madsen L, Baudet S, Bers DM (2010) Making and using calcium-selective mini- and microelectrodes. Methods Cell Biol 99:67–89

    Article  CAS  PubMed  Google Scholar 

  25. Bruton JD, Cheng AJ, Westerblad H (2012) Methods to detect Ca2+ in living cells. In: Advances in experimental medicine and biology, pp 27–43

    Google Scholar 

  26. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  CAS  PubMed  Google Scholar 

  27. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  CAS  PubMed  Google Scholar 

  28. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  29. Stosiek C, Garaschuk O, Holthoff K, Konnerth A In vivo two-photon calcium imaging of neuronal networks

    Google Scholar 

  30. Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation (optical recording/fura-2/dendritic integration/motion detection). Neurobiology 89:4139–4143

    CAS  Google Scholar 

  31. Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826

    Article  CAS  PubMed  Google Scholar 

  32. Bootman MD, Rietdorf K, Collins T, Walker S, Sanderson M (2013) Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb Protoc 8:83–99

    Google Scholar 

  33. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parmar J, Key RE, Rainey WE (2008) Development of an adrenocorticotropin-responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab 93:4542–4546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang T, Rainey WE (2012) Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol 351:58–65

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Pallafacchina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zanin, S., Lidron, E., Rizzuto, R., Pallafacchina, G. (2019). Methods to Measure Intracellular Ca2+ Concentration Using Ca2+-Sensitive Dyes. In: Raffaello, A., Vecellio Reane, D. (eds) Calcium Signalling. Methods in Molecular Biology, vol 1925. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9018-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9018-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9017-7

  • Online ISBN: 978-1-4939-9018-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics