Skip to main content

High-Throughput Screening Using Photoluminescence Probe to Measure Intracellular Calcium Levels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1925))

Abstract

Aequorin, a 22 kDa protein produced by the jellyfish Aequorea victoria, was the first probe used to measure Ca2+ concentrations ([Ca2+]) of specific intracellular organelles in intact cells. After the binding of Ca2+ to three high-affinity binding sites, an irreversible reaction occurs leading to the emission of photons that is proportional to [Ca2+]. While native aequorin is suitable for measuring cytosolic [Ca2+] after cell stimulation in a range from 0.5 to 10 μM, it cannot be used in organelles where [Ca2+] is much higher, such as in the lumen of endoplasmic/sarcoplasmic reticulum (ER/SR) and mitochondria. However, some modifications made on aequorin itself or on coelenterazine, its lipophilic prosthetic luminophore, and the addition of targeting sequences or the fusion with resident proteins allowed the specific organelle localization and the measurements of intra-organelle Ca2+ levels. In the last years, the development of multiwell plate readers has opened the possibility to perform aequorin-based high-throughput screenings and has overcome some limitation of the standard method. Here we present the procedure for expressing, targeting, and reconstituting aequorin in intact cells and for measuring Ca2+ in the bulk cytosol, mitochondria, and ER by a high-throughput screening system.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shimomura O, Johnson FH (1973) Chemical nature of the light emitter in bioluminescence of aequorin. Tetrahedron Lett 14:2963–2966. https://doi.org/10.1016/S0040-4039(01)96293-8

    Article  Google Scholar 

  2. Charbonneau H, Walsh KA, McCann RO, Prendergast FG, Cormier MJ, Vanaman TC (1985) Amino acid sequence of the calcium-dependent photoprotein aequorin. Biochemistry 24:6762–6771

    Article  CAS  Google Scholar 

  3. Head JF, Inouye S, Teranishi K, Shimomura O (2000) The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature 405:372–376

    Article  CAS  Google Scholar 

  4. Shimomura O, Johnson FH (1975) Regeneration of the photoprotein aequorin. Nature 256:236–238

    Article  CAS  Google Scholar 

  5. Granatiero V, Patron M, Tosatto A, Merli G, Rizzuto R (2014) The use of aequorin and its variants for Ca2+ measurements. Cold Spring Harb Protoc 2014:9–16

    Google Scholar 

  6. Brini M (2008) Calcium-sensitive photoproteins. Methods 46:160–166

    Article  CAS  Google Scholar 

  7. Bianchi K, Rimessi A, Prandini A, Szabadkai G, Rizzuto R (2004) Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta Mol Cell Res 1742:119–131

    Article  CAS  Google Scholar 

  8. Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14:5467–5475

    Article  CAS  Google Scholar 

  9. Kendall JM, Sala-Newby G, Ghalaut V, Dormer RL, Cambell AK (1992) Engineering the Ca2+−activated photoprotein aequorin with reduced affinity for calcium. Biochem Biophys Res Commun 187:1091–1097

    Article  CAS  Google Scholar 

  10. De la Fuente S, Fonteriz RI, de la Cruz PJ, Montero M, Alvarez J (2012) Mitochondrial free [Ca(2+)] dynamics measured with a novel low-Ca(2+) affinity aequorin probe. Biochem J 445:371–376

    Google Scholar 

  11. Bonora M, Giorgi C, Bononi A, Marchi S, Patergnani S, Rimessi A, Rizzuto R, Pinton P (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8(11):2105

    Article  CAS  Google Scholar 

  12. Shimomura O, Musicki B, Kishi Y, Inouye S (1993) Light-emitting properties of recombinant semisynthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14:373–378

    Article  CAS  Google Scholar 

  13. Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+](c)). A critical evaluation. J Biol Chem 270(17):9896–9903

    Article  CAS  Google Scholar 

  14. Brini M, Murgia M, Pasti L, Picard D, Pozzan T, Rizzuto R (1993) Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J 12:4813–4819

    Article  CAS  Google Scholar 

  15. Brini M, Marsault R, Bastianutto C, Pozzan T, Rizzuto R (1994) Nuclear targeting of aequorin. A new approach for measuring nuclear Ca2+ concentration in intact cells. Cell Calcium 16:259–268

    Article  CAS  Google Scholar 

  16. Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14:5467

    Article  CAS  Google Scholar 

  17. Rizzuto R, Simpson AWM, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  CAS  Google Scholar 

  18. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  CAS  Google Scholar 

  19. Fliegel L, Newton E, Burns K, Michalak M (1990) Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:15496–15502

    CAS  PubMed  Google Scholar 

  20. Sitia R, Meldolesi J (1992) Endoplasmic reticulum: a dynamic patchwork of specialized subregions. Mol Biol Cell 3:1067–1072

    Article  CAS  Google Scholar 

  21. Brini M, De Giorgi F, Murgia M, Marsault R, Massimino ML, Cantini M, Rizzuto R, Pozzant T (1997) Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 8:129–143

    Article  CAS  Google Scholar 

  22. Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298

    Article  CAS  Google Scholar 

  23. Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41

    Article  CAS  Google Scholar 

  24. Lasorsa FM, Pinton P, Palmieri L, Scarcia P, Rottensteiner H, Rizzuto R, Palmieri F (2008) Peroxisomes as novel players in cell calcium homeostasis. J Biol Chem 283:15300–15308

    Article  CAS  Google Scholar 

  25. Robert V, Pinton P, Tosello V, Rizzuto R, Pozzan T (2000) Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Methods Enzymol 327:440–456

    Article  CAS  Google Scholar 

  26. Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R (2001) Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J 355:1–12

    Article  CAS  Google Scholar 

  27. Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). J Biol Chem 270:9896–9903

    Article  CAS  Google Scholar 

  28. Ottolini D, Calì T, Brini M (2014) Methods to measure intracellular Ca2+ fluxes with organelle-targeted aequorin-based probes. Methods Enzymol 543:21–45

    Article  CAS  Google Scholar 

  29. Ottolini D, Calì T, Brini M (2013) Measurements of Ca2+ concentration with recombinant targeted luminescent probes. In: Methods in molecular biology. Humana Press, Clifton, NJ, pp 273–291

    Google Scholar 

  30. Allen DG, Blinks JR (1978) Calcium transients in aequorin-injected frog cardiac muscle. Nature 273:509–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anna Raffaello for the critical reading of the manuscript. This work was supported by the Italian Telethon Foundation (GGP16026) and the French Muscular Dystrophy Association (AFM-Téléthon) (19471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Vecellio Reane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feno, S., Di Marco, G., De Mario, A., Monticelli, H., Reane, D.V. (2019). High-Throughput Screening Using Photoluminescence Probe to Measure Intracellular Calcium Levels. In: Raffaello, A., Vecellio Reane, D. (eds) Calcium Signalling. Methods in Molecular Biology, vol 1925. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9018-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9018-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9017-7

  • Online ISBN: 978-1-4939-9018-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics