Skip to main content

The Supragingival Biofilm in Early Childhood Caries: Clinical and Laboratory Protocols and Bioinformatics Pipelines Supporting Metagenomics, Metatranscriptomics, and Metabolomics Studies of the Oral Microbiome

  • Protocol
  • First Online:
Odontogenesis

Abstract

Early childhood caries (ECC) is a biofilm-mediated disease. Social, environmental, and behavioral determinants as well as innate susceptibility are major influences on its incidence; however, from a pathogenetic standpoint, the disease is defined and driven by oral dysbiosis. In other words, the disease occurs when the natural equilibrium between the host and its oral microbiome shifts toward states that promote demineralization at the biofilm-tooth surface interface. Thus, a comprehensive understanding of dental caries as a disease requires the characterization of both the composition and the function or metabolic activity of the supragingival biofilm according to well-defined clinical statuses. However, taxonomic and functional information of the supragingival biofilm is rarely available in clinical cohorts, and its collection presents unique challenges among very young children. This paper presents a protocol and pipelines available for the conduct of supragingival biofilm microbiome studies among children in the primary dentition, that has been designed in the context of a large-scale population-based genetic epidemiologic study of ECC. The protocol is being developed for the collection of two supragingival biofilm samples from the maxillary primary dentition, enabling downstream taxonomic (e.g., metagenomics) and functional (e.g., transcriptomics and metabolomics) analyses. The protocol is being implemented in the assembly of a pediatric precision medicine cohort comprising over 6000 participants to date, contributing social, environmental, behavioral, clinical, and biological data informing ECC and other oral health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nascimento MM, Zaura E, Mira A, Takahashi N, Ten Cate JM (2017) Second era of OMICS in caries research: moving past the phase of disillusionment. J Dent Res 96(7):733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Divaris K (2016) Predicting dental caries outcomes in children: a “risky” concept. J Dent Res 95(3):248–254

    Article  CAS  PubMed  Google Scholar 

  3. Ballantine J, Carlson JC, Zandona A, Agler CS, Zeldin LP, Rozier G, Roberts MW, Basta PV, Luo J, Antonio-Obese ME, McNeil D, Weyant R, Crout RJ, Slayton R, Levy S, Shaffer JR, Marazita ML, North KE, Divaris K (2018) Exploring the genomic basis of early childhood caries: a pilot study. Int J Paediatr Dent 28(2):217–225

    Google Scholar 

  4. Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E (2016) The oral microbiome—an update for oral healthcare professionals. Br Dent J 221(10):657–666

    Article  CAS  PubMed  Google Scholar 

  5. Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D (2013) Dental caries from a molecular microbiological perspective. Caries Res 47(2):89–102

    Article  CAS  PubMed  Google Scholar 

  6. Featherstone JD (2004) The continuum of dental caries—evidence for a dynamic disease process. J Dent Res 83 Spec No C:C39–C42

    Google Scholar 

  7. Drury TF, Horowitz AM, Ismail AI, Maertens MP, Rozier RG, Selwitz RH (1999) Diagnosing and reporting early childhood caries for research purposes. A report of a workshop sponsored by the National Institute of Dental and Craniofacial Research, the Health Resources and Services Administration, and the Health Care Financing Administration. J Public Health Dent 59(3):192–197

    Article  CAS  PubMed  Google Scholar 

  8. Divaris K (2017) Precision dentistry in early childhood: the central role of genomics. Dent Clin North Am 61(3):619–625

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert JA, Hughes M (2011) Gene expression profiling: metatranscriptomics. Methods Mol Biol 733:195–205

    Article  CAS  PubMed  Google Scholar 

  11. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134(5):714–717

    Article  CAS  PubMed  Google Scholar 

  12. Divaris K, Roach J, Basta PV, Ferreira Zandona AG, Ginnis J, Meyer BD, Hu S, Simancas-Pallares MA, Butz N, Azcarate-Peril MA (2018) Metagenomics of early childhood oral health and early childhood caries. J Dent Res 97 (Spec Iss A):2412231 (CADR/AADR)

    Google Scholar 

  13. Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, Dai H, Stewart SJ, DeHaven CD, Miller LA (2014) High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4(2):1

    Google Scholar 

  14. Evans AM, Mitchell MW, Dai H, DeHaven CD (2012) Categorizing ion-features in liquid chromatography/mass spectrometry metabolomics data. Metabolomics 2(110):2153–0769

    Google Scholar 

  15. DeHaven CD, Evans AM, Dai H, Lawton KA (2012) Software techniques for enabling high-throughput analysis of metabolomic datasets. In: Metabolomics 2012. Intech, Vienna

    Google Scholar 

  16. DeHaven CD, Evans AM, Dai H, Lawton KA (2010) Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Chem 2(1):9

    Article  Google Scholar 

  17. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81(16):6656–6667

    Article  CAS  PubMed  Google Scholar 

  18. Bcl2Fastq 2.20 (2017) Illumina, Inc. San Diego, CA

    Google Scholar 

  19. FastQC 0.11.5 (2016) Babraham Institute, Cambridge, UK

    Google Scholar 

  20. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Google Scholar 

  22. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hong C, Manimaran S, Shen Y, Perez-Rogers JF, Byrd AL, Castro-Nallar E, Crandall KA, Johnson WE (2014) PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2:33

    Article  PubMed  PubMed Central  Google Scholar 

  24. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB (2013) ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8(7):e67019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9(8):811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghosh S, Chan CK (2016) Analysis of RNA-Seq data using TopHat and cufflinks. Methods Mol Biol 1374:339–361

    Article  CAS  PubMed  Google Scholar 

  28. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16(1):278

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng X, Li G, Liu Z (2016) Zero-inflated beta regression for differential abundance analysis with metagenomics data. J Comput Biol 23(2):102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chai H, Jiang H, Lin L, Liu L (2018) A marginalized two-part Beta regression model for microbiome compositional data. PLoS Comput Biol 14(7):e1006329

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wagner BD, Robertson CE, Harris JK (2011) Application of two-part statistics for comparison of sequence variant counts. PLoS One 6(5):e20296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu MC, Pavlicova M, Nunes EV (2011) Zero-inflated and hurdle models of count data with extra zeros: examples from an HIV-risk reduction intervention trial. Am J Drug Alcohol Abuse 37(5):367–375

    Article  PubMed  PubMed Central  Google Scholar 

  33. Preisser JS, Das K, Long DL, Divaris K (2016) Marginalized zero-inflated negative binomial regression with application to dental caries. Stat Med 35(10):1722–1735

    Article  PubMed  Google Scholar 

  34. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  35. Yekutieli D (2008) Hierarchical false discovery rate–controlling methodology. J Am Stat Assoc 103(481):309–316

    Article  CAS  Google Scholar 

  36. Hu J, Koh H, He L, Liu M, Blaser MJ, Li H (2018) A two-stage microbial association mapping framework with advanced FDR control. Microbiome 6(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  37. Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health, National Institute of Dental and Craniofacial Research, U01-DE025046. DS is supported by the Swedish Research Council (4.1-2016-00416). The Microbiome Core is supported in part by the NIH/National Institute of Diabetes and Digestive and Kidney Diseases grant P30 DK34987.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimon Divaris .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Divaris, K. et al. (2019). The Supragingival Biofilm in Early Childhood Caries: Clinical and Laboratory Protocols and Bioinformatics Pipelines Supporting Metagenomics, Metatranscriptomics, and Metabolomics Studies of the Oral Microbiome. In: Papagerakis, P. (eds) Odontogenesis. Methods in Molecular Biology, vol 1922. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9012-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9012-2_40

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9011-5

  • Online ISBN: 978-1-4939-9012-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics