Skip to main content

Protocols to Study Dental Caries In Vitro: Microbial Caries Models

  • Protocol
  • First Online:
Odontogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1922))

Abstract

Caries lesions result from the interaction between dental biofilm and sugars. Since the biofilm is an important component in the etiology of the disease, biofilm models have been developed to study the cariogenicity of dietary sugars, as well as the anticaries effect of substances. Two of such models, termed as “static” or “continuous flow,” are described in details here together with their advantages, limitations, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ccahuana-Vásquez RA, Cury JA (2010) S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res 24(2):135–141

    Article  Google Scholar 

  2. Fernández CE, Tenuta LM, Cury JA (2016) Validation of a cariogenic biofilm model to evaluate the effect of fluoride on enamel and root dentine demineralization. PLoS One 11(1):e0146478

    Article  Google Scholar 

  3. Ribeiro CC, Ccahuana-Vásquez RA, Carmo CD, Alves CM, Leitão TJ, Vidotti LR, Cury JA (2012) The effect of iron on Streptococcus mutans biofilm and on enamel demineralization. Braz Oral Res 26(4):300–305

    Article  Google Scholar 

  4. Peralta SL, Carvalho PHA, Ccahuana-Vásquez RA, Pereira CMP, Cury JA, Piva E, Lund RG (2017) Cytotoxicity, genotoxicity and antibiofilm activity on Streptococcus mutans of an experimental self-etching adhesive system containing natural Butia capitata oil. Int J Adhes Adhes 78:95–101

    Article  CAS  Google Scholar 

  5. Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA (2012) Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model. Caries Res 46(5):460–466

    Article  CAS  Google Scholar 

  6. Muñoz-Sandoval C, Muñoz-Cifuentes MJ, Giacaman RA, Ccahuana-Vasquez RA, Cury JA (2012) Effect of bovine milk on Streptococcus mutans biofilm cariogenic properties and enamel and dentin demineralization. Pediatr Dent 34(7):e197–e201

    PubMed  Google Scholar 

  7. Cavalcanti YW, Bertolini MM, da Silva WJ, Del-Bel-Cury AA, Tenuta LM, Cury JA (2014) A three-species biofilm model for the evaluation of enamel and dentin demineralization. Biofouling 30(5):579–588

    Article  CAS  Google Scholar 

  8. Botelho JN, Villegas-Salinas M, Troncoso-Gajardo P, Giacaman RA, Cury JA (2016) Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm—caries model. Braz Oral Res 30(1). https://doi.org/10.1590/1807-3107BOR-2016.vol30.0052

  9. Fernández CE, Fontana M, Samarian D, Cury JA, Rickard AH, González-Cabezas C (2016) Effect of fluoride-containing toothpastes on enamel demineralization and Streptococcus mutans biofilm architecture. Caries Res 50(2):151–158

    Article  Google Scholar 

  10. Costa Oliveira BE, Cury JA, Ricomini Filho AP (2017) Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization. PLoS One 12(7):e0181168

    Article  Google Scholar 

  11. Fernández CE, Giacaman RA, Tenuta LM, Cury JA (2015) Effect of the probiotic Lactobacillus rhamnosus LB21 on the cariogenicity of Streptococcus mutans UA159 in a dual-species biofilm model. Caries Res 49(6):583–590

    Article  Google Scholar 

  12. Koo H, Vacca Smith AM, Bowen WH, Rosalen PL, Cury JA, Park YK (2000) Effects of Apis mellifera propolis on the activities of streptococcal glucosyltransferases in solution and adsorbed onto saliva-coated hydroxyapatite. Caries Res 34(5):418–426

    Article  CAS  Google Scholar 

  13. Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP (2000) Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res 34(6):491–497

    Article  CAS  Google Scholar 

  14. Kielbassa AM, Wrbas KT, Schulte-Meriting J, Hellwig E (1999) Correlation of transversal microradiography and microhardness on in situ induced demineralization in irradiated and nonirradiated human dental enamel. Arch Oral Biol 44:243–251

    Article  CAS  Google Scholar 

  15. Mensinkai PK, Ccahuana-Vasquez RA, Chedjieu I, Amaechi BT, Mackey AC, Walker TJ, Blanken DD, Karlinsey RL (2012) In situ remineralization of white-spot enamel lesions by 500 and 1,100 ppm F dentifrices. Clin Oral Investig 16(4):1007–1014. https://doi.org/10.1007/s00784-011-0591-2

    Article  PubMed  Google Scholar 

  16. De Josselin de Jong E, Ten Bosch JJ, Noordman J (1987) Optimised microcomputer guided quantitative microradiography on dental mineralised tissue slices. Phys Med Biol 32:887–899

    Article  CAS  Google Scholar 

  17. Amaechi BT, Key MC, Balu S, Okoye LO, Gakunga PT (2016) Evaluation of the caries-preventive effect of toothpaste containing surface prereacted glass-ionomer filler. J Investig Clin Dent 8(4). https://doi.org/10.1111/jicd.12249

    Article  Google Scholar 

  18. Silvertown JD, Wong BP, Abrams SH, Sivagurunathan KS, Mathews SM, Amaechi BT (2016) Comparison of The Canary System and DIAGNOdent for the in vitro detection of caries under opaque dental sealants. J Investig Clin Dent 8(4). https://doi.org/10.1111/jicd.12239

    Article  Google Scholar 

  19. Silvertown JD, Wong BP, Sivagurunathan KS, Abrams SH, Kirkham J, Amaechi BT (2017) Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence. J Investig Clin Dent 8(4). https://doi.org/10.1111/jicd.12257

    Article  Google Scholar 

  20. Lee VA, Karthikeyan R, Rawls HR, Amaechi BT (2010) Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion. J Dent 38(9):742–749

    Article  CAS  Google Scholar 

  21. Amaechi BT, Ramalingam K (2014) Evaluation of fluorescence imaging with reflectance enhancement for caries detection. Am J Dent 27:112–116

    Google Scholar 

  22. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA (2011) Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 56(5):437–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennett T. Amaechi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Amaechi, B.T., Tenuta, L.M.A., Ricomini Filho, A.P., Cury, J.A. (2019). Protocols to Study Dental Caries In Vitro: Microbial Caries Models. In: Papagerakis, P. (eds) Odontogenesis. Methods in Molecular Biology, vol 1922. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9012-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9012-2_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9011-5

  • Online ISBN: 978-1-4939-9012-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics