Skip to main content

Peptide-Mediated Biomimetic Regrowth of Human Enamel In Situ

  • Protocol
  • First Online:
Odontogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1922))

Abstract

Mimicking the dynamics of mineral loss and gain involved in dental caries formation can help us evaluate and compare the mineralization efficacy of different treatment agents used in enamel remineralization. Here, we offer an abridged study design outlining the preparation of tooth samples, creation of artificial dental lesions, application of a peptide, and characterization of the regrown enamel-like mineral layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369(9555):51–59

    CAS  PubMed  Google Scholar 

  2. Buzalaf MA, Hannas AR, Magalhães AC, Rios D, Honório HM, Delbem AC (2010) pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci 18(4):316–334

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J (2013) An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater 9(7):7289–7297

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mukherjee K, Ruan Q, Liberman D, White SN, Moradian-Oldak J (2016) 2016. Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel. J Mater Res 31(5):556–563

    CAS  Google Scholar 

  5. Ruan Q, Moradian-Oldak J (2015) Amelogenin and enamel biomimetics. J Mater Chem 3(16):3112–3129

    CAS  Google Scholar 

  6. Beniash E, Simmer JP, Margolis HC (2005) The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. J Struct Biol 149(2):182–190

    CAS  PubMed  Google Scholar 

  7. Fang PA, Conway JF, Margolis HC, Simmer JP, Beniash E (2011) Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc Natl Acad Sci 108(34):14097–14102

    CAS  PubMed  Google Scholar 

  8. Le Norcy E, Kwak SY, Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC (2011) Leucine-rich amelogenin peptides regulate mineralization in vitro. J Dent Res 90(9):1091–1097

    PubMed  PubMed Central  Google Scholar 

  9. Shafiei F, Hossein BG, Farajollahi MM, Fathollah M, Marjan B, Tahereh JK (2015) Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: An in vitro study. Scanning 37(3):179–185

    CAS  PubMed  Google Scholar 

  10. Reed R, Xu C, Liu Y, Gorski JP, Wang Y, Walker MP (2015) Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol 60(5):690–697

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Habelitz S, Marshall GW, Balooch M, Marshall SJ (2002) Nanoindentation and storage of teeth. J Biomech 35(7):995–998

    PubMed  Google Scholar 

  12. Amblard M, Fehrentz JA, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33(3):239–254

    CAS  PubMed  Google Scholar 

  13. Person A, Bocherens H, Saliège JF, Paris F, Zeitoun V, Gérard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22(2):211–221

    Google Scholar 

  14. Poralan Jr. GM, Gambe JE, Alcantara EM, Vequizo RM. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application. In IOP conference series: materials science and engineering 79, 1, 012028). IOP Publishing Bristol. 2015

    Google Scholar 

  15. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York-London, p 689

    Google Scholar 

  16. Chuenarrom C, Benjakul P, Daosodsai P (2009) Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Mater Res 12(4):473–476

    Google Scholar 

  17. Chung HY, Huang KC (2013) Effects of peptide concentration on remineralization of eroded enamel. J Mech Behav Biomed Mater 28:213–221

    CAS  PubMed  Google Scholar 

  18. Aydın B, Pamir T, Baltaci A, Orman MN, Turk T (2015) Effect of storage solutions on microhardness of crown enamel and dentin. Eur J Dent 9(2):262

    PubMed  PubMed Central  Google Scholar 

  19. Ten Cate JM, Featherstone JDB (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med 2(3):283–296

    PubMed  Google Scholar 

  20. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, Brookes SJ, Aggeli A (2007) Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res 86(5):426–430

    CAS  PubMed  Google Scholar 

  21. Yang Y, Lv XP, Shi W, Li JY, Li DX, Zhou XD, Zhang LL (2014) 8DSS-promoted remineralization of initial enamel caries in vitro. J Dent Res 93(5):520–524

    CAS  PubMed  Google Scholar 

  22. Cochrane NJ, Zero DT, Reynolds EC (2012) Remineralization models. Adv Dent Res 24(2):129–132

    CAS  PubMed  Google Scholar 

  23. Wu D, Yang J, Li J, Chen L, Tang B, Chen X, Wu W, Li J (2013) Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials 34(21):5036–5047

    CAS  PubMed  Google Scholar 

  24. Zhou J, Hsiung LL (2007) Depth-dependent mechanical properties of enamel by nanoindentation. J Biomed Mater Res Part A 81(1):66–74

    Google Scholar 

Download references

Acknowledgments

This research was supported by NIH-NIDCR R01 grants DE-13414 and DE-020099 and the USC Coulter Translational Partnership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Moradian-Oldak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mukherjee, K., Ruan, Q., Moradian-Oldak, J. (2019). Peptide-Mediated Biomimetic Regrowth of Human Enamel In Situ. In: Papagerakis, P. (eds) Odontogenesis. Methods in Molecular Biology, vol 1922. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9012-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9012-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9011-5

  • Online ISBN: 978-1-4939-9012-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics