Skip to main content

Experimental Manipulation of Ploidy in Zebrafish Embryos and Its Application in Genetic Screens

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

Metazoan animals are typically diploid, possessing two sets of a chromosome in the somatic cells of an organism. In naturally diploid species, alteration from the endogenous diploid state is usually embryonic lethal. However, the ability to experimentally manipulate ploidy of animal embryos has fundamental as well as applied biology advantages. In this chapter we describe experimental procedures to convert normally diploid zebrafish embryos into haploid or tetraploid states. We also describe methodologies to verify the ploidy of embryos and the utility of ploidy manipulation in expediting the isolation of mutations using both forward and reverse genetic strategies in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endersby J (2007) A Guinea Pig’s History of biology: the plants and animals who taught us the facts of life. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. Schön I, Martens K, van Dijk PJ (2009) Lost sex: the evolutionary biology of parthenogenesis. Springer, Dordrecht

    Book  Google Scholar 

  3. Kubiak J, Paldi A, Weber M, Maro B (1991) Genetically identical parthenogenetic mouse embryos produced by inhibition of the first meiotic cleavage with cytochalasin D. Development 111:763–769

    CAS  PubMed  Google Scholar 

  4. Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–134

    Article  CAS  Google Scholar 

  5. Li W, Shuai L, Wan H, Dong M, Wang M, Sang L et al (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490:407–411

    Article  CAS  Google Scholar 

  6. Komma DJ, Endow SA (1995) Haploidy and androgenesis in Drosophila. Proc Natl Acad Sci U S A 92:11884–11888

    Article  CAS  Google Scholar 

  7. Araki K, Okamoto H, Graveson AC, Nakayama I, Nagoya H (2001) Analysis of haploid development based on expression patterns of developmental genes in the medaka Oryzias latipes. Develop Growth Differ 43:591–599

    Article  CAS  Google Scholar 

  8. Corley-Smith GE, Lim CJ, Brandhorst BP (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142:1265–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurdon JB (1960) The effects of ultraviolet radiation on uncleaved eggs of Xenopus laevis. J Cell Sci S3:299–311

    Google Scholar 

  10. Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296

    Article  CAS  Google Scholar 

  11. Moens CB, Yan YL, Appel B, Force AG, Kimmel CB (1996) Valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122:3981–3990

    CAS  PubMed  Google Scholar 

  12. Walker C (1999) Haploid screens and gamma-ray mutagenesis. Methods Cell Biol 60:43–70

    Article  CAS  Google Scholar 

  13. Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433

    Article  CAS  Google Scholar 

  14. Heier J, Takle KA, Hasley AO, Pelegri F (2015) Ploidy manipulation and induction of alternate cleavage patterns through inhibition of centrosome duplication in the early zebrafish embryo. Dev Dyn 244:1300–1312

    Article  CAS  Google Scholar 

  15. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K et al (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724

    Article  CAS  Google Scholar 

  16. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  17. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  18. Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966

    Article  CAS  Google Scholar 

  19. van Eeden FJM, Granato M, Odenthal J, Haffter P (1998) Chapter 2: Developmental mutant screens in the zebrafish. Methods Cell Biol 60:21–41

    Article  Google Scholar 

  20. Pelegri F, Dekens MP, Schulte-Merker S, Maischein HM, Weiler C et al (2004) Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn 231:324–335

    Article  CAS  Google Scholar 

  21. Pelegri F, Mullins MC (2004) Genetic screens for maternal-effect mutations. Methods Cell Biol 77:21–51

    Article  CAS  Google Scholar 

  22. Pelegri F, Mullins MC (2016) Genetic screens for mutations affecting adult traits and parental-effect genes. Methods Cell Biol 135:39–87

    Article  CAS  Google Scholar 

  23. Pelegri F, Schulte-Merker S (1999) Chapter 1: A gynogenesis-based screen for maternal-effect genes in the zebrafish Danio rerio. Methods Cell Biol 60:1–20

    CAS  PubMed  Google Scholar 

  24. Menon T, Nair S (2018) A transient window of resilience during early development minimizes teratogenic effects of heat in zebrafish embryos. Dev Dyn 247(8):992–1004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our research is funded by a Wellcome Trust/Department of Biotechnology India Alliance Intermediate Fellowship (IA/I/13/2/501042) to SN and by the Tata Institute of Fundamental Research, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreelaja Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menon, T., Nair, S. (2019). Experimental Manipulation of Ploidy in Zebrafish Embryos and Its Application in Genetic Screens. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics