Skip to main content

Methods for Isolating the Balbiani Body/Germplasm from Xenopus laevis Oocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

The Balbiani body (Bb) is a large membrane-less organelle, densely packed with mitochondria, endoplasmic reticulum, proteins, and RNA. The Bb is present in many vertebrate female gametes. In frogs, the Bb is established early during oogenesis and operates as a maternal inherited embryonic determinant that specifies germline identity through the formation of germplasm. We describe here two techniques to isolate the Bb/germplasm from Xenopus laevis primary oocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. King ML (2014) Germ-cell specification in xenopus. In: Xenopus development. John Wiley & Sons, Inc., New York, pp 75–100

    Chapter  Google Scholar 

  2. Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11(1):37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res 313(8):1639–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kloc M, Bilinski S, Etkin LD (2004) The Balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36

    Article  CAS  Google Scholar 

  5. Aguero T, Kassmer S, Alberio R, Johnson A, King ML (2017) Mechanisms of vertebrate germ cell determination. Adv Exp Med Biol 953:383–440

    Article  CAS  PubMed  Google Scholar 

  6. Aguero T, Zhou Y, Kloc M, Chang P, Houliston E, King ML (2016) Hermes (Rbpms) is a critical component of RNP complexes that sequester germline RNAs during oogenesis. J Dev Biol 4(1). https://doi.org/10.3390/jdb4010002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266(1):43–61

    Article  CAS  PubMed  Google Scholar 

  8. Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121(2):287–297

    CAS  PubMed  Google Scholar 

  9. Makita R, Mizuno T, Koshida S, Kuroiwa A, Takeda H (1998) Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity. Mech Dev 71(1–2):165–176

    Article  CAS  PubMed  Google Scholar 

  10. Nojima H, Rothhamel S, Shimizu T, Kim CH, Yonemura S, Marlow FL et al (2010) Syntabulin, a motor protein linker, controls dorsal determination. Development 137(6):923–933

    Article  CAS  PubMed  Google Scholar 

  11. Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML (2004) Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol Biol Cell 15(10):4669–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tworzydlo W, Kisiel E, Jankowska W, Witwicka A, Bilinski SM (2016) Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia. Cell Tissue Res 366(1):191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilinski SM, Kloc M, Tworzydlo W (2017) Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 34(11):1405–1412

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136(2):153–179

    Article  CAS  Google Scholar 

  15. Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM (2014) Balbiani body, nuage and sponge bodies – term plasm pathway players. Arthropod Struct Dev 43(4):341–348

    Article  Google Scholar 

  16. Boke E, Mitchison TJ (2017) The Balbiani body and the concept of physiological amyloids. Cell Cycle 16(2):153–154

    Article  CAS  PubMed  Google Scholar 

  17. Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, King ML (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137(4):651–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schisa J (2012) Chapter seven - new insights into the regulation of RNP granule assembly in oocytes. In: Jeon KW (ed) International review of cell and molecular biology, vol 295. Academic Press, Cambridege, pp 233–289

    Google Scholar 

  19. Chan AP, Kloc M, Bilinski S, Etkin LD (2001) The vegetally localized mRNA fatvg is associated with the germ plasm in the early embryo and is later expressed in the fat body. Mech Dev 100(1):137–140

    Article  CAS  PubMed  Google Scholar 

  20. Forristall C, Pondel M, Chen L, King ML (1995) Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121(1):201–208

    CAS  PubMed  Google Scholar 

  21. Tada H, Mochii M, Orii H, Watanabe K (2012) Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev Biol 371(1):86–93

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi T, Taguchi A, Watanabe K, Orii H (2013) DEADSouth protein localizes to germ plasm and is required for the development of primordial germ cells in Xenopus laevis. Biol Open 2(2):191–199

    Article  CAS  PubMed  Google Scholar 

  23. Newman K, Aguero T, King ML (2018) Isolation of Xenopus oocytes. Cold Spring Harb Protoc 2018(2):pdb.prot095851

    Article  Google Scholar 

  24. Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML (2017) High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 144(2):292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butler AM, Aguero T, Newman KM, King ML (2017) Primordial germ cell isolation from Xenopus laevis embryos. Methods Mol Biol 1463:115–124

    Article  CAS  PubMed  Google Scholar 

  26. King ML, Davis R (1987) Do Xenopus oocytes have a heat shock response? Dev Biol 119(2):532–539

    Article  CAS  PubMed  Google Scholar 

  27. Boke E, Ruer M, Wuhr M, Coughlin M, Lemaitre R, Gygi SP et al (2016) Amyloid-like self-assembly of a cellular compartment. Cell 166(3):637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Aguero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Butler, A., Owens, D., King, M.L., Aguero, T. (2019). Methods for Isolating the Balbiani Body/Germplasm from Xenopus laevis Oocytes. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics