Skip to main content

Differentiation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells into Dopaminergic Neurons

  • Protocol
  • First Online:
Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

Abstract

Dopaminergic (DA) neurons are involved in many critical functions within the central nervous system (CNS), and dopamine neurotransmission impairment underlies a wide range of disorders from motor control deficiencies, such as Parkinson’s disease (PD), to psychiatric disorders, such as alcoholism, drug addictions, bipolar disorders, schizophrenia and depression. Neural stem cell-based technology has potential to play an important role in developing efficacious biological and small molecule therapeutic products for disorders with dopamine dysregulation. Various methods of differentiating DA neurons from pluripotent stem cells have been reported. In this chapter, we describe a simple technique using dopamine-inducing factors (DIFs) to differentiate neural stem cells (NSCs), isolated from induced pluripotent stem cells (iPSCs) into DA neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isacson O (2003) The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol 2(7):417–424

    Article  PubMed  CAS  Google Scholar 

  2. Brazel CY, Rao MS (2004) Aging and neuronal replacement. Ageing Res Rev 3(4):465–483

    Article  PubMed  Google Scholar 

  3. Björklund A et al (1987) Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. TINS 10(12):509–516

    Google Scholar 

  4. Jonsson ME et al (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219(1):341–354

    Article  PubMed  Google Scholar 

  5. Carvey PM et al (2001) A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp Neurol 171(1):98–108

    Article  PubMed  CAS  Google Scholar 

  6. Zeng X et al (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22(6):925–940

    Article  PubMed  CAS  Google Scholar 

  7. Chiba S et al (2008) Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats. Stem Cells 26(11):2810–2820

    Article  PubMed  CAS  Google Scholar 

  8. Hedlund E et al (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells 26(6):1526–1536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kriks S et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Arenas E (2010) Towards stem cell replacement therapies for Parkinson’s disease. Biochem Biophys Res Commun 396(1):152–156

    Article  PubMed  CAS  Google Scholar 

  11. O'Keeffe FE et al (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131(Pt 3):630–641

    Article  PubMed  Google Scholar 

  12. Mendez I et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14(5):507–509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Deierborg T et al (2008) Emerging restorative treatments for Parkinson's disease. Prog Neurobiol 85(4):407–432

    Article  PubMed  CAS  Google Scholar 

  14. Redmond DE Jr et al (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104(29):12175–12180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sonntag KC et al (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25(2):411–418

    Article  PubMed  CAS  Google Scholar 

  16. Ko JY et al (2007) Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons. J Neurochem 103(4):1417–1429

    Article  PubMed  CAS  Google Scholar 

  17. Yasuhara T et al (2006) Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J Neurosci 26(48):12497–12511

    Article  PubMed  CAS  Google Scholar 

  18. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096

    Article  PubMed  CAS  Google Scholar 

  19. Mendez I et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 128(Pt 7):1498–1510

    Article  PubMed  PubMed Central  Google Scholar 

  20. Correia AS et al (2005) Stem cell-based therapy for Parkinson’s disease. Ann Med 37(7):487–498

    Article  PubMed  CAS  Google Scholar 

  21. Bjorklund A (2005) Cell therapy for Parkinson’s disease: problems and prospects. Novartis Found Symp 265:174–186 Discussion 187, 204–211

    PubMed  Google Scholar 

  22. Roy NS et al (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11):1259–1268

    Article  PubMed  CAS  Google Scholar 

  23. Armstrong RJ et al (2003) Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 151(2):204–217

    Article  PubMed  Google Scholar 

  24. Ben-Hur T et al (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22(7):1246–1255

    Article  PubMed  Google Scholar 

  25. Borlongan CV, Sanberg PR (2002) Neural transplantation for treatment of Parkinson’s disease. Drug Discov Today 7(12):674–682

    Article  PubMed  CAS  Google Scholar 

  26. Daadi MM et al (2012) Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One 7(7):e41120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Grealish S et al (2010) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133(Pt 2):482–495

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim JH et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56

    Article  PubMed  CAS  Google Scholar 

  29. Lee SH et al (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679

    Article  PubMed  CAS  Google Scholar 

  30. Kawasaki H et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40

    Article  PubMed  CAS  Google Scholar 

  31. Perrier AL et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101(34):12543–12548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hong S et al (2008) Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104(2):316–324

    PubMed  CAS  Google Scholar 

  33. Yan Y et al (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23(6):781–790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Schulz TC et al (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22(7):1218–1238

    Article  PubMed  CAS  Google Scholar 

  35. Vazin T et al (2009) A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 4(8):e6606

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hayashi H et al (2008) Meningeal cells induce dopaminergic neurons from embryonic stem cells. Eur J Neurosci 27(2):261–268

    Article  PubMed  Google Scholar 

  37. Cho MS et al (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105(9):3392–3397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ko JY et al (2009) Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Mol Ther 17(10):1761–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ueno M et al (2006) Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc Natl Acad Sci U S A 103(25):9554–9559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim DW et al (2006) Stromal cell-derived inducing activity, Nurr1, and signaling molecules synergistically induce dopaminergic neurons from mouse embryonic stem cells. Stem Cells 24(3):557–567

    Article  PubMed  CAS  Google Scholar 

  41. Cai J et al (2009) The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson’s disease model. Stem Cells 27(1):220–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NeoNeuron LLC.

Disclosures: Dr. Marcel M. Daadi is founder of the biotech company NeoNeuron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. Daadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Daadi, M.M. (2019). Differentiation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells into Dopaminergic Neurons. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics