Skip to main content

Overview of Fusion Detection Strategies Using Next-Generation Sequencing

  • Protocol
  • First Online:
Tumor Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1908))

Abstract

Structural gene fusion rearrangements leading to aberrant signaling are frequently detected in many cancer types. Gene fusions have significant prognostic and predictive value and are screened as part of molecular pathology testing for patient management. Many bioinformatic approaches have been developed to detect fusion mutations including whole-genome sequencing, targeted-based hybridization capture, and transcriptome-based approaches. Here we describe the most commonly used experimental methods to sequence and identify gene fusions using either DNA or RNA. We contrast experimental approaches both in the research and diagnostic setting and describe typical bioinformatic pipelines and software packages used to identify fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schram AM, Chang MT, Jonsson P, Drilon A (2017) Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 14(12):735–748. https://doi.org/10.1038/nrclinonc.2017.127

    Article  CAS  PubMed  Google Scholar 

  2. Nowell PCHDA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1488–1501

    Article  Google Scholar 

  3. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    Article  CAS  PubMed  Google Scholar 

  4. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ, Investigators I (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004. https://doi.org/10.1056/NEJMoa022457

    Article  CAS  PubMed  Google Scholar 

  5. de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347(6293):558–561. https://doi.org/10.1038/347558a0

    Article  PubMed  Google Scholar 

  6. Li JY, Gaillard F, Moreau A, Harousseau JL, Laboisse C, Milpied N, Bataille R, Avet-Loiseau H (1999) Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol 154(5):1449–1452. https://doi.org/10.1016/S0002-9440(10)65399-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566. https://doi.org/10.1038/nature05945

    Article  CAS  PubMed  Google Scholar 

  8. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. https://doi.org/10.1056/NEJMoa040938

    Article  CAS  PubMed  Google Scholar 

  9. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648. https://doi.org/10.1126/science.1117679

    Article  CAS  PubMed  Google Scholar 

  10. Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, Ambros PF, Sheer D, Turc-Carel C, Triche TJ et al (1994) The Ewing family of tumors--a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331(5):294–299. https://doi.org/10.1056/NEJM199408043310503

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Tognon CE, Godinho FJ, Yasaitis L, Hock H, Herschkowitz JI, Lannon CL, Cho E, Kim SJ, Bronson RT, Perou CM, Sorensen PH, Orkin SH (2007) ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 12(6):542–558. https://doi.org/10.1016/j.ccr.2007.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lovf M, Thomassen GO, Bakken AC, Celestino R, Fioretos T, Lind GE, Lothe RA, Skotheim RI (2011) Fusion gene microarray reveals cancer type-specificity among fusion genes. Genes Chromosomes Cancer 50(5):348–357. https://doi.org/10.1002/gcc.20860

    Article  CAS  PubMed  Google Scholar 

  13. Teixido C, Karachaliou N, Peg V, Gimenez-Capitan A, Rosell R (2014) Concordance of IHC, FISH and RT-PCR for EML4-ALK rearrangements. Transl Lung Cancer Res 3(2):70–74. https://doi.org/10.3978/j.issn.2218-6751.2014.02.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101. https://doi.org/10.1038/nature07638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker BC, Zhang W (2013) Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin J Cancer 32(11):594–603. https://doi.org/10.5732/cjc.013.10178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136(4):527–539. https://doi.org/10.1309/AJCPR1SVT1VHUGXW

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rogers TM, Arnau GM, Ryland GL, Huang S, Lira ME, Emmanuel Y, Perez OD, Irwin D, Fellowes AP, Wong SQ, Fox SB (2017) Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer. Sci Rep 7:42259. https://doi.org/10.1038/srep42259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong SQ, Li J, Tan AY, Vedururu R, Pang JM, Do H, Ellul J, Doig K, Bell A, MacArthur GA, Fox SB, Thomas DM, Fellowes A, Parisot JP, Dobrovic A, Cohort C (2014) Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genet 7:23. https://doi.org/10.1186/1755-8794-7-23

    Article  CAS  Google Scholar 

  20. Evangelista AF, Zanon MF, Carloni AC, de Paula FE, Morini MA, Ferreira-Neto M, Soares IC, Miziara JE, de Marchi P, Scapulatempo-Neto C, Reis RM (2017) Detection of ALK fusion transcripts in FFPE lung cancer samples by NanoString technology. BMC Pulm Med 17(1):86. https://doi.org/10.1186/s12890-017-0428-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vendrell JA, Taviaux S, Beganton B, Godreuil S, Audran P, Grand D, Clermont E, Serre I, Szablewski V, Coopman P, Mazieres J, Costes V, Pujol JL, Brousset P, Rouquette I, Solassol J (2017) Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep 7(1):12510. https://doi.org/10.1038/s41598-017-12679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong SQ, Fellowes A, Doig K, Ellul J, Bosma TJ, Irwin D, Vedururu R, Tan AY, Weiss J, Chan KS, Lucas M, Thomas DM, Dobrovic A, Parisot JP, Fox SB (2015) Assessing the clinical value of targeted massively parallel sequencing in a longitudinal, prospective population-based study of cancer patients. Br J Cancer 112(8):1411–1420. https://doi.org/10.1038/bjc.2015.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar S, Vo AD, Qin F, Li H (2016) Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep 6:21597. https://doi.org/10.1038/srep21597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Tsai WH, Ding Y, Chen R, Fang Z, Huo Z, Kim S, Ma T, Chang TY, Priedigkeit NM, Lee AV, Luo J, Wang HW, Chung IF, Tseng GC (2016) Comprehensive evaluation of fusion transcript detection algorithms and a meta-caller to combine top performing methods in paired-end RNA-seq data. Nucleic Acids Res 44(5):e47. https://doi.org/10.1093/nar/gkv1234

    Article  CAS  PubMed  Google Scholar 

  25. Davidson NM, Majewski IJ, Oshlack A (2015) JAFFA: high sensitivity transcriptome-focused fusion gene detection. Genome Med 7(1):43. https://doi.org/10.1186/s13073-015-0167-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Melsted P, Hateley S, Joseph IC, Pimentel H, Bray NL, Pachter L (2017) Fusion detection and quantification by pseudoalignment. bioRxiv. https://doi.org/10.1101/166322

  27. Kim D, Salzberg SL (2011) TopHat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72. https://doi.org/10.1186/gb-2011-12-8-r72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  29. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao Y, Smyth GK, Shi W (2013) The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10):e108. https://doi.org/10.1093/nar/gkt214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6(9):677–681. https://doi.org/10.1038/nmeth.1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, White NM, Schmidt HK, Fulton RS, Tomlinson C, Warren WC, Wilson RK, Maher CA (2016) INTEGRATE: gene fusion discovery using whole genome and transcriptome data. Genome Res 26(1):108–118. https://doi.org/10.1101/gr.186114.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schroder J, Hsu A, Boyle SE, Macintyre G, Cmero M, Tothill RW, Johnstone RW, Shackleton M, Papenfuss AT (2014) Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads. Bioinformatics 30(8):1064–1072. https://doi.org/10.1093/bioinformatics/btt767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cameron DL, Schroder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT (2017) GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. https://doi.org/10.1101/gr.222109.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Griffith M, Griffith OL, Hancock JM, Zvelebil MJ (2004) Mitelman database (chromosome aberrations and gene fusions in Cancer). In: Dictionary of bioinformatics and computational biology. John Wiley & Sons. https://doi.org/10.1002/9780471650126.dob0996

  37. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  38. Tembe WD, Pond SJ, Legendre C, Chuang HY, Liang WS, Kim NE, Montel V, Wong S, McDaniel TK, Craig DW, Carpten JD (2014) Open-access synthetic spike-in mRNA-seq data for cancer gene fusions. BMC Genomics 15:824. https://doi.org/10.1186/1471-2164-15-824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. http://broadinstitute.github.io/picard/

  40. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111. https://doi.org/10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Q. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schröder, J., Kumar, A., Wong, S.Q. (2019). Overview of Fusion Detection Strategies Using Next-Generation Sequencing. In: Murray, S. (eds) Tumor Profiling. Methods in Molecular Biology, vol 1908. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9004-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9004-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9002-3

  • Online ISBN: 978-1-4939-9004-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics