Skip to main content

A Pipeline for ctDNA Detection Following Primary Tumor Profiling Using a Cancer-Related Gene Sequencing Panel

  • Protocol
  • First Online:
Tumor Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1908))

Abstract

Circulating tumor DNA (ctDNA) is emerging as a promising biomarker for cancer diagnosis. However, the system to detect gene mutations with very low frequencies from plasma remains to be established in terms of technical aspects of sequencing technologies and cost for universal use. One strategy is to employ a cancer sequencing panel to detect mutations in a primary tumor in a time- and cost-effective manner, and subsequently assess these mutations with a digital PCR technology from plasma ctDNA. This strategy enables the accurate detection of low frequency mutations (i.e., less than 1% allele frequency) from ctDNA, since both comprehensive coverage of genes and quantitative mutation detection with very low frequencies are required for cancer diagnosis from plasma samples. Here, we present a pipeline can be used to detect mutations from plasma ctDNA with very low allele frequencies using a next-generation sequencing technology for comprehensive coverage of primary tumors and droplet digital PCR for sensitive detection from plasma ctDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Primrose JN, Perera R, Gray A et al (2014) Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA 311:263–270

    Article  CAS  Google Scholar 

  2. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra224

    Article  Google Scholar 

  3. Kuang Y, Rogers A, Yeap BY et al (2009) Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res 15:2630–2636

    Article  CAS  Google Scholar 

  4. Morelli MP, Overman MJ, Dasari A et al (2015) Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol 26:731–736

    Article  CAS  Google Scholar 

  5. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  Google Scholar 

  6. Sacher AG, Paweletz C, Dahlberg SE et al (2016) Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2(8):1014–1022

    Article  Google Scholar 

  7. Sakai K, Horiike A, Irwin DL et al (2013) Detection of epidermal growth factor receptor T790M mutation in plasma DNA from patients refractory to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci 104:1198–1204

    Article  CAS  Google Scholar 

  8. Spindler KG, Appelt AL, Pallisgaard N et al (2013) KRAS-mutated plasma DNA as predictor of outcome from irinotecan monotherapy in metastatic colorectal cancer. Br J Cancer 109:3067–3072

    Article  CAS  Google Scholar 

  9. Spindler KL, Pallisgaard N, Vogelius I et al (2012) Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res 18:1177–1185

    Article  CAS  Google Scholar 

  10. Tabernero J, Lenz HJ, Siena S et al (2015) Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 16:937–948

    Article  CAS  Google Scholar 

  11. Taniguchi K, Uchida J, Nishino K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815

    Article  CAS  Google Scholar 

  12. Yamada T, Iwai T, Takahashi G et al (2016) Utility of KRAS mutation detection using circulating cell-free DNA from patients with colorectal cancer. Cancer Sci 107(7):936–943

    Article  CAS  Google Scholar 

  13. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990

    Article  CAS  Google Scholar 

  14. Pereira E, Camacho-Vanegas O, Anand S et al (2015) Personalized circulating tumor DNA biomarkers dynamically predict treatment response and survival in gynecologic cancers. PLoS One 10:e0145754

    Article  Google Scholar 

  15. Tie J, Wang Y, Tomasetti C et al (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8:346ra392

    Article  Google Scholar 

  16. Wimberger P, Roth C, Pantel K et al (2011) Impact of platinum-based chemotherapy on circulating nucleic acid levels, protease activities in blood and disseminated tumor cells in bone marrow of ovarian cancer patients. Int J Cancer 128:2572–2580

    Article  CAS  Google Scholar 

  17. Perrone F, Lampis A, Bertan C et al (2014) Circulating free DNA in a screening program for early colorectal cancer detection. Tumori 100:115–121

    Article  CAS  Google Scholar 

  18. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586

    Article  Google Scholar 

  19. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  Google Scholar 

  20. Sato KA, Hachiya T, Iwaya T et al (2016) Individualized mutation detection in circulating tumor DNA for monitoring colorectal tumor burden using a cancer-associated gene sequencing panel. PLoS One 11:e0146275

    Article  Google Scholar 

  21. Pellerin C, Mckercher G, Aprikian AG et al (2016) A simple variable number of tandem repeat-based genotyping strategy for the detection of handling errors and validation of sample identity in biobanks. Biopreserv Biobank 14(5):383–389

    Article  CAS  Google Scholar 

  22. http://www.genomics.agilent.com/en/HaloPlex-Next-Generation-PCR-/HaloPlex-Custom-Kits/?cid=cat100006&tabId=AG-PR-1067

  23. http://www.genomics.agilent.com/en/ClearSeq-Disease-Research-Panels/ClearSeq-Cancer-Research-Panels/?cid=AG-PT-185&tabId=AG-PR-1225

  24. https://www.elimbio.com/RightOn_Cancer_Sequencing.htm

  25. http://www.illumina.com/content/dam/illumina-marketing/documents/products/other/cancer-panel-comparison-tool.pdf

  26. https://www.neb.com/products/e7000-nebnext-direct-cancer-hotspot-panel#tabselect2

  27. http://en.novogene.com/clinical-services/novopm-cancer-panels/

  28. http://www.personalis.com/cancer/cancer-panel-dna-rna/

  29. https://www.qiagen.com/us/shop/sample-technologies/dna/dna-preparation/generead-dnaseq-gene-panels-v2#orderinginformation

  30. http://raindancetech.com/thunderbolts-cancer-panel/

  31. https://www.thermofisher.com/order/catalog/product/4475346

  32. https://www.thermofisher.com/order/catalog/product/4477685

  33. http://tests.labmed.washington.edu/UW-OncoPlex

  34. https://www.idtdna.com/pages/products/nextgen/target-capture/xgen-lockdown-panels/xgen-pan-cancer-panel

  35. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  36. Das K, Norton SE, Alt JR et al (2014) Stabilization of cellular RNA in blood during storage at room temperature: a comparison of cell-free RNA BCT((R)) with K3EDTA tubes. Mol Diagn Ther 18:647–653

    Article  CAS  Google Scholar 

  37. Kang Q, Henry NL, Paoletti C et al (2016) Comparative analysis of circulating tumor DNA stability in K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem 49(18):1354–1360

    Article  CAS  Google Scholar 

  38. Chabon JJ, Simmons AD, Lovejoy AF et al (2016) Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 7:11815

    Article  CAS  Google Scholar 

  39. Sundaresan TK, Sequist LV, Heymach JV et al (2016) Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res 22:1103–1110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Iwate Medical University Keiryokai Collaborative Research Grants (#125 for K.A.S. and #131 for S.S.N.) and JSPS KAKENHI (Grant Number JP16H01578 for S.S.N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi S. Nishizuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nishizuka, S.S., Sato, K.A., Hachiya, T. (2019). A Pipeline for ctDNA Detection Following Primary Tumor Profiling Using a Cancer-Related Gene Sequencing Panel. In: Murray, S. (eds) Tumor Profiling. Methods in Molecular Biology, vol 1908. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9004-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9004-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9002-3

  • Online ISBN: 978-1-4939-9004-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics