Skip to main content

Molecular Profiling of RNA Tumors Using High-Throughput RNA Sequencing: Overview of Library Preparation Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1908))

Abstract

RNA sequencing (RNA-seq) is revolutionizing the study of cancer by providing a highly sensitive and robust tool to interrogate the transcriptome. It leverages the power of deep sequencing technology and provides global and multidimensional views of transcriptional landscapes in healthy and tumor tissues. Such information is contributing innovative insights to our understanding of the genetic basis of cancer and the progression of the disease. RNA-seq is a superior technology to DNA microarrays in that it provides digital rather than analog information on transcripts and their isoforms. The front end (sequencing library preparation and validation) is technically complex and time intensive. The primary objective in preparing a sequencing library is to eliminate or minimize bias, so that the library is reflective of the input RNA sample in terms of both sequence content and transcript abundance. This chapter describes the RNA-seq approach, and reviews methods and good practices for library preparation and sequencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  2. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker ME, Hardiman G (2014) Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing. J Mol Endocrinol 52(3):R241–R256. https://doi.org/10.1530/jme-13-0219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  5. Lappalainen T, Sammeth M, Friedlander MR, 't Hoen PA, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlof J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HP, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, Strom TM, Lehrach H, Schreiber S, Sudbrak R, Carracedo A, Antonarakis SE, Hasler R, Syvanen AC, van Ommen GJ, Brazma A, Meitinger T, Rosenstiel P, Guigo R, Gut IG, Estivill X, Dermitzakis ET (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501 (7468):506-511. doi:https://doi.org/10.1038/nature12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7(8):1534–1550. https://doi.org/10.1038/nprot.2012.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  8. Heindl A, Nawaz S, Yuan Y (2015) Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology. Lab Investig 95(4):377–384. https://doi.org/10.1038/labinvest.2014.155

    Article  PubMed  Google Scholar 

  9. Mardis ER, Wilson RK (2009) Cancer genome sequencing: a review. Hum Mol Genet 18(R2):R163–R168. https://doi.org/10.1093/hmg/ddp396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423. https://doi.org/10.1073/pnas.0932692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang CQ, Yesupriya A, Rowell JL, Pimentel CB, Clyne M, Gwinn M, Khoury MJ, Wulf A, Schully SD (2014) A systematic review of cancer GWAS and candidate gene meta-analyses reveals limited overlap but similar effect sizes. Eur J Hum Genet 22(3):402–408. https://doi.org/10.1038/ejhg.2013.161

    Article  CAS  PubMed  Google Scholar 

  12. Dawn Teare M, Barrett JH (2005) Genetic linkage studies. Lancet 366(9490):1036–1044. https://doi.org/10.1016/S0140-6736(05)67382-5

    Article  CAS  PubMed  Google Scholar 

  13. Eberwine J, Sul JY, Bartfai T, Kim J (2014) The promise of single-cell sequencing. Nat Methods 11(1):25–27

    Article  CAS  PubMed  Google Scholar 

  14. Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860. https://doi.org/10.1093/nar/gku555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P (2015) Technologies for single-cell isolation. Int J Mol Sci 16(8):16897–16919. https://doi.org/10.3390/ijms160816897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hardiman G (2003) Microarrays methods and applications: nuts & bolts. DNA Press Eagleville, PA

    Google Scholar 

  17. Hardiman G (2004) Microarray platforms—comparisons and contrasts. Pharmacogenomics 5(5):487–502. https://doi.org/10.1517/14622416.5.5.487

    Article  CAS  PubMed  Google Scholar 

  18. Hrdlickova R, Toloue M, Tian B (2017) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8(1). https://doi.org/10.1002/wrna.1364

    Article  Google Scholar 

  19. Zhao C, Waalwijk C, de Wit PJGM, Tang D, van der Lee T (2013) RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 14(1):1–16. https://doi.org/10.1186/1471-2164-14-21

    Article  CAS  Google Scholar 

  20. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P (2014) Library construction for next-generation sequencing: overviews and challenges. BioTechniques 56(2):61–64., 66, 68, passim. https://doi.org/10.2144/000114133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mader U, Nicolas P, Richard H, Bessieres P, Aymerich S (2011) Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Curr Opin Biotechnol 22(1):32–41. https://doi.org/10.1016/j.copbio.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  22. Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SAW, Polyak K, Florea LD, Kumar R (2013) RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 3:1689. https://doi.org/10.1038/srep01689 http://www.nature.com/articles/srep01689#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rother S, Meister G (2011) Small RNAs derived from longer non-coding RNAs. Biochimie 93(11):1905–1915. https://doi.org/10.1016/j.biochi.2011.07.032

    Article  CAS  PubMed  Google Scholar 

  24. Saxena A, Carninci P (2011) Long non-coding RNA modifies chromatin. BioEssays 33(11):830–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saxena A, Carninci P (2011) Whole transcriptome analysis: what are we still missing? Wiley Interdiscip Rev Syst Biol Med 3(5):527–543

    Article  CAS  PubMed  Google Scholar 

  26. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  27. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21. https://doi.org/10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  28. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20(7):908–913. https://doi.org/10.1038/nsmb.2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akrami R, Jacobsen A, Hoell J, Schultz N, Sander C, Larsson E (2013) Comprehensive analysis of long non-coding RNAs in ovarian cancer reveals global patterns and targeted DNA amplification. PLoS One 8(11):e80306. https://doi.org/10.1371/journal.pone.0080306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, Geng J, Zhang B, Yu X, Yang J, Hu S, Yu J (2010) A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96(5):259–265. https://doi.org/10.1016/j.ygeno.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  31. Choy JY, Boon PL, Bertin N, Fullwood MJ (2015) A resource of ribosomal RNA-depleted RNA-Seq data from different normal adult and fetal human tissues. Sci Data 2:150063. https://doi.org/10.1038/sdata.2015.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O'Neil D, Glowatz H, Schlumpberger M (2013) Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr Protoc Mol Biol Chapter 4:Unit 4 19. https://doi.org/10.1002/0471142727.mb0419s103

  33. Mullins M, Perreard L, Quackenbush JF, Gauthier N, Bayer S, Ellis M, Parker J, Perou CM, Szabo A, Bernard PS (2007) Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin Chem 53(7):1273–1279. https://doi.org/10.1373/clinchem.2006.083725

    Article  CAS  PubMed  Google Scholar 

  34. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM (2014) Comparison of RNA-Seq by poly(A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 15:419. https://doi.org/10.1186/1471-2164-15-419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW (2013) Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank 11(2):101–106. https://doi.org/10.1089/bio.2012.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123. https://doi.org/10.1093/nar/gkp596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao S, Zhang Y, Gordon W, Quan J, Xi H, Du S, von Schack D, Zhang B (2015) Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. BMC Genomics 16(1):675. https://doi.org/10.1186/s12864-015-1876-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. https://doi.org/10.1126/science.1138341

    Article  CAS  PubMed  Google Scholar 

  39. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense transcriptomes of human cells. Science 322(5909):1855–1857. https://doi.org/10.1126/science.1163853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mc CB (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36(6):344–355

    Article  Google Scholar 

  41. Syed F (2010) Application of Nextera [trade] technology to RNA-seq library preparation. Nat Methods 7(12)

    Article  Google Scholar 

  42. Picelli S, Bjorklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R (2014) Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res 24(12):2033–2040. https://doi.org/10.1101/gr.177881.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chugh P, Dittmer DP (2012) Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 3(5):601–616. https://doi.org/10.1002/wrna.1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44(1):3–12. https://doi.org/10.1016/j.ymeth.2007.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  46. Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19(7–8):454–492. https://doi.org/10.1007/s00335-008-9136-7

    Article  CAS  PubMed  Google Scholar 

  47. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981 http://www.nature.com/nm/journal/v21/n11/abs/nm.3981.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  48. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was conducted with support from start-up funds from the MUSC COM to GH and an award from SC EPSCoR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Medical University of South Carolina. Sean M. Courtney and Willian A. da Silveira contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Hardiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Courtney, S.M., da Silveira, W.A., Hazard, E.S., Hardiman, G. (2019). Molecular Profiling of RNA Tumors Using High-Throughput RNA Sequencing: Overview of Library Preparation Methods. In: Murray, S. (eds) Tumor Profiling. Methods in Molecular Biology, vol 1908. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9004-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9004-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9002-3

  • Online ISBN: 978-1-4939-9004-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics